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1 Introduction

Matching markets are markets for differentiated goods and services where parties care about

characteristics of their partners. Examples span labor markets (such as hiring associates

at a law firm), HMO networks in health care, and supply chain networks in manufacturing.

Matching markets are also the topic of a large literature, from the BeckerBecker (19731973) mar-

riage model to more recent contributions with rich heterogeneous preferences,11 such as the

Kelso and CrawfordKelso and Crawford (19821982) labor market model and the Hatfield and MilgromHatfield and Milgrom (20052005) model

of matching with contracts.

A central finding of this literature is that the existence of equilibrium depends on ruling

out complementarities in preferences. A number of results show that substitutable preferences

(which rule out such complementarities) are, in a certain sense, necessary to guarantee

existence of an equilibrium.22 This restriction is substantial, because complementarities are a

central element of many matching markets. For example, in labor market clearinghouses, as in

the work of Kojima, Pathak and RothKojima, Pathak and Roth (20132013), couples find positions in the same geographic

area to be complementary. In models with one-dimensional heterogeneity, as in the KremerKremer

(19931993) O-ring theory, complementarities are often a central issue.

This paper investigates whether equilibrium existence can be guaranteed in large markets,

which we model with a continuum of agents.33 This is inspired by the literature on general

equilibrium, where this large market approach was decisive in demonstrating the existence

of an equilibrium without imposing convexity assumptions on preferences (AumannAumann, 19661966).
1We use the term heterogeneous preferences to refer to preferences that may differ across agents. In

particular, this includes models with rich heterogenous preferences such as those of Gale and ShapleyGale and Shapley (19621962)
and Kelso and CrawfordKelso and Crawford (19821982).

2Previous work in this literature typically shows that equilibria exist under the assumption that preferences
are substitutable and that ruling out complementarities is “necessary” in a well-defined maximal domain
sense to guarantee existence of an equilibrium. The particular papers vary in terms of generality, of whether
utility is transferable, and whether the equilibrium concept is a stable matching or a competitive equilibrium.
See, for example, the work of Kelso and CrawfordKelso and Crawford (19821982), RothRoth (1984b1984b), Gul and StacchettiGul and Stacchetti (19991999, 20002000),
Hatfield and MilgromHatfield and Milgrom (20052005), Sun and YangSun and Yang (20062006, 20092009), and Hatfield et al.Hatfield et al. (20132013).

3A contemporaneous paper by Che, Kim and KojimaChe, Kim and Kojima (20182018) considers a related model with a continuum
of “workers” to be matched to a finite number of “firms”; we discuss the connection of their work with ours
below.
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More broadly, we investigate how the classic general equilibrium results relate to our results

in matching theory, and how to apply general equilibrium techniques in matching settings.

We establish three theorems: Theorem 11 shows that, in a large two-sided matching market,

a stable matching exists as long as one side of the market has substitutable preferences.

Proposition 11 shows that this theorem is tight in a precise maximal domain sense, so that

existence cannot be guaranteed under larger classes of preferences. By contrast, Theorem 22

shows that the core of a large matching market always exists, even with general trading

networks and preferences. Finally, Theorem 33 shows that a competitive equilibrium always

exists in a large matching market with transferable utility.

These results make three contributions: First, from a narrow perspective, our results

contribute to the theory of matching markets. Theorems 11 and 33 show that equilibria exist

under considerably more general conditions than in the analogous models with a finite number

of consumers (Hatfield and MilgromHatfield and Milgrom, 20052005; Hatfield et al.Hatfield et al., 20132013). The added generality is

substantial because it includes natural classes of preferences that allow for complementarities.44

Second, from a broader perspective, our results demonstrate the similarities and dif-

ferences between matching markets and general equilibrium models. We demonstrate two

main differences: In general equilibrium theory, with large markets, there are mild con-

ditions that guarantee both existence of equilibrium and core convergence (i.e., that the

core coincides with the set of equilibria). This is in sharp contrast to matching markets:

Proposition 11 and our examples show that stable outcomes can only be guaranteed to exist

under substantial assumptions on preferences. And, whenever stable matchings do not

exist, core convergence fails because Theorem 22 guarantees that the core is not empty. The

intuition for this difference is that the definition of stability allows agents who form a block

to keep some of their old contracts, making stability a more demanding concept than the

core. However, there are also substantial similarities between matching theory and general
4In particular, we demonstrate the existence of stable outcomes in applied settings such as matching

with couples (Roth and PeransonRoth and Peranson, 19991999; Kojima et al.Kojima et al., 20132013; Ashlagi et al.Ashlagi et al., 20142014), and generalizations of
commonly used empirical models of matching (Choo and SiowChoo and Siow, 20062006; FoxFox, 20102010; Salanié and GalichonSalanié and Galichon, 20112011).
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equilibrium theory. In general equilibrium and game theory, it is known that the core (or an

approximation of the core) of a large game is non-empty under mild conditions, like in our

Theorem 22. Results of this type were found by AumannAumann (19641964, 19661966) in exchange economies,

WoodersWooders (19831983) and Wooders and ZameWooders and Zame (19841984) in general games with transferable utility,

and Kaneko and WoodersKaneko and Wooders (19861986) in games with non-transferable utility and finite coalitions.

Moreover, in club theory, it is known that equilibria exist in models similar to the transferable

utility setting of Theorem 33. Our existence result thus extends the results of Ellickson et al.Ellickson et al.

(19991999) to the transferable utility setting.

Third, from a technical perspective, our results show how to apply techniques from

general equilibrium theory to matching markets.55 Theorem 11 is based on a topological

fixed-point theorem, following Arrow and DebreuArrow and Debreu (19541954), in contrast to the order-theoretic

fixed point theorems typically used in matching theory. Theorem 22 is an application of an

existence theorem by Kaneko and WoodersKaneko and Wooders (19861986). Theorem 33 follows a proof technique by

Gretsky et al.Gretsky et al. (19921992, 19991999).

This paper is organized as follows: In Section 22 we illustrate our main results with

examples, and in Section 33 we describe the relationship of our work to the rest of the

literature. In Section 44, we demonstrate the existence of stable outcomes in bilateral matching

economies. We then show that core outcomes exist for continuum economies with multilateral

contracting in Section 55. Finally, we consider continuum economies with discrete contracting

but transferable utility in Section 66. Section 77 concludes.

2 Understanding Our Results

Before presenting our full analysis, we consider simple examples that illustrate our results. The

first example considers entrepreneurs and programmers matching to form technology startups.

There are three types of agents: entrepreneurs (e), generalist programmers (g), and database
5The literature following Hylland and ZeckhauserHylland and Zeckhauser (19791979) has used general equilibrium techniques to

develop fair and efficient allocation procedures (when transfers are not available). Here we focus on issues
related to the existence of equilibrium.
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Figure 1: A simple economy. An arrow denotes a contract.

programmers (d), with a continuum of equal mass of each type. Entrepreneurs have an idea

for a business, but need both types of programming services. For now, transfers between

the agents are limited: There are only three contracts available, each of which specifies

some standardized compensation for fulfillment of a programming task. Entrepreneurs

may contract for general programming (x) and database programming (y) from the general

programmers, or for database programming from the database experts (z), as depicted in

Figure 11. Entrepreneurs need both types of programming to create a viable startup, and

prefer that the database programming be performed by a specialist. Their preferences over

bundles of contracts are {x, z} � {x, y} � ∅. Database programmers would rather contract

than not, i.e., {z} � ∅, and generalist programmers are only willing to contract if they can

sell both of their services, i.e., {x, y} � ∅.

The first surprising observation about this example is that there is no stable outcome,

even with a continuum of agents. An outcome is stable if it is individually rational (i.e.,

no agent wishes to unilaterally withdraw from some contracts he currently signs) and there

is no blocking set of contracts (i.e., a set of contracts each agent would choose given his

current outcome, possibly dropping some contracts he is currently a party to). In this

example, in any stable outcome every employed generalist programmer must be signing the

only individually rational contract bundle {x, y}. However, if any entrepreneur is engaging in

the bundle of contracts {x, y}, then that entrepreneur would rather drop the y contract and

obtain specialized database services instead, moving to their preferred bundle {x, z}. Such

an outcome is not stable, as the generalist programmers are not interested in only selling

x, and would rather not transact; but if no agents were transacting, then {x, y} would be

a blocking set, as both the entrepreneur and the generalist prefer this bundle to nothing.
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Figure 2: An economy with a stable outcome when there is a continuum of types. An arrow
denotes a contract.

Therefore, even with a continuum of agents, a stable outcome does not exist. Thus, assuming

a large market is not sufficient to guarantee existence of stable outcomes without additional

assumptions on preferences. However, the existence of stable outcomes can be shown under

substantially more general conditions than in markets with a finite number of agents.

Theorem 11 shows that stable outcomes do exist in any large two-sided market where one

side has substitutable preferences. This assumption is considerably more general than

the standard assumption in the discrete matching literature that all agents have sub-

stitutable preferences (Alkan and GaleAlkan and Gale, 20032003; FleinerFleiner, 20032003; Hatfield and MilgromHatfield and Milgrom, 20052005;

Hatfield and KominersHatfield and Kominers, 20172017).66 In particular, this result implies that a stable outcome exists

for any large two-sided many-to-one matching (with contracts) market, since unit-demand

preferences are a special case of substitutable preferences.

Consider a variation of our previous example: There are still two programmer types, g and

d, but now there are two firms, our entrepreneur e and another firm f , who desires at most

one contract—either x̄ with the generalist programmer, or z̄ with the database programmer.

We assume that the preferences of f are given by {x̄} � {z̄} � ∅. The generalist programmer

now only desires one contract, either x or x̄, and has preferences given by {x} � {x̄} � ∅.

The database programmer prefers z̄ to z, i.e., has preferences given by {z̄} � {z} � ∅.

Finally, the preferences of the entrepreneur e are given by {x, z} � ∅.77 The set of contracts
6In finite market economies, substitutable preferences are often necessary to guarantee the existence

of stable outcomes: see, e.g., Hatfield and KojimaHatfield and Kojima (20082008) on the setting of many-to-one matching and
Hatfield and KominersHatfield and Kominers (20122012) on the setting of matching in vertical networks. Substitutable preferences are
not necessary to guarantee the existence of stable outcomes in the setting of many-to-one matching with
contracts, but weakly substitutable preferences are: see Hatfield and KojimaHatfield and Kojima (20082008).

7In particular, e never desires the contract y, and so we drop it from the example.
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is {x, x̄, z, z̄}. Figure 22 depicts the structure of this example.

In a discrete model with one agent of each type, there is no stable outcome. If both

programmers are matched to e, then f can block the match by poaching the database

programmer, i.e., {z̄} is a blocking set. But {z̄, x} is not stable, as it is not individually

rational for e. The outcome {z̄} is not stable, as f will then wish to lay off the database

programmer and hire the generalist programmer, i.e., {x̄} is a blocking set. Finally, the

outcome {x̄} is not stable, as then both programmers would be willing to work for the

entrepreneur, i.e., {x, z} is a blocking set.

By contrast, if there is a continuum of agents of each type, a stable outcome exists.

Suppose there is an equal mass of each type of agent. Half of the programmers of each type

work for the entrepreneur, and the other programmers work for the firm. Thus, firms of type

f are at capacity, and so do not wish to acquire any more programmers from other firms.

Likewise, an entrepreneur of type e will not block the match as he is unable to attract a

database programmer.

Theorem 22 shows that the core of a matching market is always non-empty. Returning

to the first startup example, consider the outcome where all entrepreneurs sign the set of

contracts {x, y} with generalist programmers. Although this allocation is not stable, it is in

the core. There is no coalition of agents that can do better, as for an entrepreneur to move to

the z contract with the specialized database programmer would require withdrawing from his

entire relationship with the generalist programmer. In fact, the core is always non-empty in

a class of models allowing multilateral contracting, general trading networks, and limitations

on transfers.

Finally, Theorem 33 shows that, if agents have quasilinear preferences over a numeraire

commodity, a competitive equilibrium always exists. Thus, in both of the examples given

above, if entrepreneurs and programmers have quasilinear preferences over a numeraire,

then prices can adjust so that the market clears. In fact, when agents have quasilinear

preferences over a numeraire commodity, competitive equilibria exist in general trading
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networks, not just two-sided (i.e., buyer–seller) economies. Hence, with a continuum of

agents and a numeraire, only mild conditions are required to guarantee the existence of

equilibrium. By contrast, in models with a discrete number of agents significant restrictions

must be placed on preferences in order to ensure the existence of a competitive equilibrium.

These restrictions are necessary in models of exchange economies with indivisible goods

(Gul and StacchettiGul and Stacchetti, 19991999, 20002000; Sun and YangSun and Yang, 20062006, 20092009; Baldwin and KlempererBaldwin and Klemperer, 20182018)

and in matching models with discrete contractual relationships (Kelso and CrawfordKelso and Crawford, 19821982;

Hatfield et al.Hatfield et al., 20132013).88 Theorem 33 generalizes the existence result of Azevedo et al.Azevedo et al. (20132013),

who demonstrated existence in a general equilibrium setting with indivisible goods, but

without the rich set of contracts we consider. Ellickson et al.Ellickson et al. (19991999) have shown existence

of equilibria in related settings. While their result is very general, it does not include our

quasilinear case. Moreover, our result implies the existence of stable matchings for the

roommate problem (with transfers), first shown by Chiappori et al.Chiappori et al. (20142014).

Our results for continuum economies raise the question of whether approximately stable

outcomes exist in large, but finite, matching markets, for an appropriately defined concept of

approximate stability. Consider again the example depicted in Figure 22. In the stable outcome

in the continuum economy, half of the programmers of each type join the entrepreneur and

the other half join the firm. Now suppose there is a large, but finite, number k of agents of

each type. If k is even, then a stable outcome analogous to the continuum stable outcome

exists: k
2 of the programmers of each type join the entrepreneur and the other programmers

join the firm. If k is odd, no stable outcome exists, but an approximately stable outcome

exists, in the sense that there exists an individually rational outcome for which every blocking

set contains one particular agent. Proposition 22 generalizes this observation.99

8However, in the special case of an auction, i.e., a buyer–seller market with only one seller, a competitive
equilibrium always exists: see Bikhchandani and OstroyBikhchandani and Ostroy (20022002).

9We caution readers that whether approximately stable outcomes are a useful solution concept depends
on details of the institutional setting. First, if it is easy for agents to find and implement blocking sets,
approximately stable outcomes may not be predictive of final market outcomes. Second, from a mechanism
design perspective, legal or other constraints may preclude an approximately stable outcome from the set
of feasible market outcomes. Finally, computation of approximately stable outcomes must be practical.
Nevertheless, in many settings, approximate stability can be seen as either an intuitively plausible prediction
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3 Relationship to the Literature

In addition to the previously cited works in matching, general equilibrium, club theory, and

game theory, our work is related to the literature on large matching markets. A number of

recent papers that have applied large market ideas to matching (e.g., Immorlica and MahdianImmorlica and Mahdian

(20052005), Kojima and PathakKojima and Pathak (20092009), Kojima et al.Kojima et al. (20132013), Ashlagi et al.Ashlagi et al. (20142014), Lee and YarivLee and Yariv

(20142014), LeeLee (20162016), and Ashlagi et al.Ashlagi et al. (20172017)). Some papers explicitly consider a model with

a continuum of agents: Bodoh-CreedBodoh-Creed (20132013), Echenique et al.Echenique et al. (20132013), and MenzelMenzel (20152015), like

us, consider a model with a continuum of agents on both sides, while Azevedo and LeshnoAzevedo and Leshno

(20162016) and Abdulkadiroğlu et al.Abdulkadiroğlu et al. (20152015) have a finite number of firms being matched to a

continuum mass of workers. The key difference between our work and these papers is that

we focus on the existence of equilibrium in a very general setting. By contrast, other works

consider settings without complementarities, where existence was well-known in the discrete

case: The focus of Azevedo and LeshnoAzevedo and Leshno (20162016), Bodoh-CreedBodoh-Creed (20132013), Abdulkadiroğlu et al.Abdulkadiroğlu et al.

(20152015), and MenzelMenzel (20152015) is instead in building tractable models in those settings, and

applying them to specific problems. Echenique et al.Echenique et al. (20132013) investigate testable implications

of stability.

The most closely related paper to our work here is the contemporaneous work by Che et al.Che et al.

(20182018). They considered a model of a finite number of “large” firms matching to a continuum

of workers. Like us, they use a topological fixed-point theorem to show that stable outcomes

exist even if some workers are complements. Thus, their model is more similar to the classic

Arrow and DebreuArrow and Debreu (19541954) model, where “firms” play the role of consumers and “workers” play

the role of divisible goods. By contrast, our model is more similar to that of AumannAumann (19641964),

in which there is a continuum of consumers. In fact, the key assumption in Che et al.Che et al. (20182018)

is a convexity assumption similar to that of Arrow and DebreuArrow and Debreu (19541954). However, the work of

Che et al.Che et al. (20182018) is not a particular case of ours, because they consider an infinite number of

types, incorporating rich preference structures that are not allowed in our setting. Thus, we

of market outcomes or as a mechanism design goal.
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view their work as complementary to our contributions in Section 44 as each considers the

economy becoming large in distinct ways. Finally, in subsequent work, JagadeesanJagadeesan (20172017)

built upon our model by incorporating large firms; he uses extensions of our arguments to

establish some of the results in Che et al.Che et al. (20182018).

Nguyen and VohraNguyen and Vohra (20182018) consider existence of approximately stable outcomes in a setting

with a large but finite number of agents. Their main application is resident-hospital matching

with couples. They show that it is possible to change the capacities of hospitals so that

a stable outcome always exists. In particular, they use Scarf’s Lemma and combinatorial

optimization techniques to tightly bound how much it is necessary to change capacities. For

example, in the matching with couples context the total hospital capacity in the market

has to increase by at most nine. However, their results can be generalized far beyond the

couples example. The most substantive assumptions are that all agents are acceptable

matches, and that hospital preferences satisfy a generalized responsiveness condition. Our

work here differs in that we show the existence of stable outcomes in very general settings,

while Nguyen and VohraNguyen and Vohra (20182018) impose more structure but give tight bounds on the capacity

increases necessary to restore stability.

4 Stable Outcomes in Large Economies

4.1 Framework

There is a finite set B of buyer types and a finite set S of seller types; for each agent type

i ∈ I ≡ B ∪ S, there exists a mass θi of agents of type i. There also exists a finite set X

of contracts, and assignment functions b and s such that each contract x ∈ X is assigned a

buyer type b(x) ∈ B and a seller type s(x) ∈ S.

For a set of contracts Y ⊆ X, we let b(Y ) ≡ ∪y∈Y {b(y)} and s(Y ) ≡ ∪y∈Y {s(y)}. We also

let Yi ≡ {y ∈ Y : i ∈ {b(y), s(y)}} denote the set of contracts in Y associated with agents of

type i.
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4.1.1 Preferences

Each type of agent i ∈ I has strict preferences �i over sets of contracts involving that agent.

We naturally extend preference relations to subsets of X: for Y, Z ⊆ X, we write Y �i Z if

and only if Yi �i Zi.

For any agent type i ∈ I, the preference relation �i induces a choice function

Ci(Y ) ≡ max
�i
{Z : Z ⊆ Yi}

for any Y ⊆ X.1010

The notion of substitutability has been key in assuring the existence of stable outcomes in

settings with a finite number of agents.1111 An agent type i ∈ I has substitutable preferences

if, when presented with a larger choice set, any previously rejected contract is still rejected.

Definition 1. An agent type i ∈ I has substitutable preferences if for all x, z ∈ X and

Y ⊆ X, if z /∈ Ci(Y ∪ {z}), then z /∈ Ci({x} ∪ Y ∪ {z}).

4.1.2 Outcomes

We let mi
Z denote the mass of agents of type i ∈ I who engage in contracts Z ⊆ Xi; thus,

mi ∈ [0, θi]℘(Xi), where ℘(Xi) is the power set of Xi. The supply of a contract x ∈ X is given
10Here, we use the notation max�i

to indicate that the maximization is taken with respect to the preferences
of agent i.

11In the setting of many-to-many matching with contracts, substitutable preferences are both sufficient (RothRoth,
1984b1984b; Echenique and OviedoEchenique and Oviedo, 20062006; Klaus and WalzlKlaus and Walzl, 20092009; Hatfield and KominersHatfield and Kominers, 20172017) and necessary in
the maximal domain sense (Hatfield and KominersHatfield and Kominers, 20172017) to guarantee the existence of stable outcomes. (Here,
by necessary in the maximal domain sense we mean that if one agent’s preferences are not substitutable, there
exist substitutable preferences for the other agents such that no stable outcome exists. See, e.g., the work of
PyciaPycia (20122012) for a setting where stable matches exist even in the presence of complementarities.) In the setting
of many-to-one matching with contracts, substitutability of preferences is sufficient (Hatfield and MilgromHatfield and Milgrom,
20052005), but not necessary in the maximal domain sense (Hatfield and KojimaHatfield and Kojima, 20082008, 20102010; Hatfield et al.Hatfield et al.,
20182018); however, if each contract specifies a unique buyer-seller pair, preference substitutability is necessary
in the maximal domain sense (Hatfield and KojimaHatfield and Kojima, 20082008). Similarly, in settings with transferable utility,
substitutability is both sufficient to guarantee the existence of competitive equilibria (Kelso and CrawfordKelso and Crawford,
19821982; Gul and StacchettiGul and Stacchetti, 19991999; Sun and YangSun and Yang, 20062006; Hatfield et al.Hatfield et al., 20132013) and necessary in the maximal
domain sense (Gul and StacchettiGul and Stacchetti, 19991999; Hatfield and KojimaHatfield and Kojima, 20082008; Hatfield et al.Hatfield et al., 20132013). See the work of
Baldwin and KlempererBaldwin and Klemperer (20182018) for further discussion of when competitive equilibria exist in settings with
discrete goods.

11



by

ms(x)
x ≡

∑
{x}⊆Z⊆Xs(x)

m
s(x)
Z

while demand is given by

mb(x)
x ≡

∑
{x}⊆Z⊆Xb(x)

m
b(x)
Z .

We may now define an outcome for this economy as a vector of contract allocations for each

type of agent such that supply equals demand.

Definition 2. An outcome is a vector ((mb)b∈B, (ms)s∈S), where mi ∈ [0, θi]℘(Xi) for each

i ∈ I, such that

1. For all i ∈ I, ∑
Z⊆Xim

i
Z = θi, and

2. For all x ∈ X, mb(x)
x = ms(x)

x .

The first condition of Definition 22 ensures that the total mass of type i agents participating

in some set of contracts is equal to the total mass of those type of agents in the economy;

note that an agent does not participate in any contract if he participates in the empty set

of contracts. The second condition ensures that for each contract x, the mass of buyers

participating in x is the same as the mass of sellers participating in x.

4.2 Existence of Stable Outcomes

As is standard in matching theory, we define an equilibrium as a stable outcome. An outcome

m is individually rational if, for all i ∈ I and Z ⊆ Xi, Z 6= Ci(Z) implies that mi
Z = 0. An

outcome m is blocked by a set of contracts Z ⊆ X if:

1. There exists a cover1212 {Zb}b∈B of Z such that for each Zb there exists a buyer type

b ∈ B such that {b} = b(Zb) and an associated set Y b ⊆ Xb r Zb such that

(a) mb
Y b > 0, and

12A cover of a set Z is a collection of sets {Zi}i∈I such that ∪i∈IZ
i = Z.
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(b) Zb ⊆ Cb(Zb ∪ Y b).

2. There exists a cover {Zs}s∈S of Z such that for each Zs there exists a seller type s ∈ S

such that {s} = s(Zs) and an associated set Y s ⊆ Xs r Zs such that

(a) ms
Y s > 0, and

(b) Zs ⊆ Cs(Zs ∪ Y s).

3. There exist positive integer quantities qb for each b ∈ B and qs for each s ∈ S such

that the supply and demand of each contract z ∈ Z is the same:

∑
b:z∈Zb

qb =
∑

s:z∈Zs
qs.

Definition 3. An outcome m is stable if it is individually rational and it is not blocked.

This definition of stability is equivalent to the standard definition from the matching

literature (see, e.g., Hatfield and MilgromHatfield and Milgrom (20052005)). Individual rationality requires that no

agent can do strictly better by dropping some of his contracts. An outcome not being blocked

means that it is impossible for a positive measure of agents to do strictly better by forming

new contracts with each other, while possibly keeping some of their contracts with other

agents.

Stability is a natural analogue to competitive equilibrium in settings without transfers.1313

In a stable outcome, every agent is choosing an optimal set of contracts given the “prices,”

i.e., the set of contracts that other agents would be willing to accept—this corresponds to

the standard competitive equilibrium requirement that each agent chooses an optimal bundle

given prices. Market clearing is also satisfied in any stable outcome, as a contract is chosen

by its buyer if and only if that contract is also chosen by its seller.

We illustrate the model with a simple example.
13Hatfield et al.Hatfield et al. (20132013) show that in settings with transfers and quasilinear utility, every competitive

equilibrium corresponds to a stable outcome.
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Figure 3: A simple economy. An arrow denotes a contract.

Example 1. Consider a simple economy where B = {b}, S = {s} and θb = θs = 1. Let

X = {x, y} where b(x) = b(y) = b and s(x) = s(y) = s, illustrated in Figure 33. Let preferences

be given by

b : {x, y} � ∅,

s : {x} � {y} � ∅.

The only stable outcome is given by mb
{x,y} = 1

2 ,m
b
∅ = 1

2 ,m
s
{x} = 1

2 ,m
s
{y} = 1

2 , with all

other entries of m being zero. Note that to show the outcome m where mb
∅ = ms

∅ = 1 (and

mb
Y = ms

Y = 0 for all Y 6= ∅) is not stable in our setting requires the full generality of

Definition 33, in the sense that we need to use different covers of the same blocking set for

buyers and sellers; we let Z = {x, y} and consider the cover {{x, y}} for buyers and the cover

{{x}, {y}} for sellers.

We now state the main theorem of this section.

Theorem 1. If buyers’ preferences are substitutable, then a stable outcome exists.

To prove Theorem 11, we construct a generalized Gale-Shapley operator, as is standard

in the matching with contracts literature. Let OB ∈ [0,∞)X denote an offer vector for the

buyers, i.e., the mass of each contract the buyers have access to.

Suppose that b has preferences given by

Y K �b . . . �b Y k �b . . . �b Y 1 �b ∅ ≡ Y 0

14



over all individually rational subsets of Xb. We define hbY k(OB) inductively, k = K, . . . , 0 as

hbY k(OB) ≡ min

θb −
K∑
k̃>k

hb
Y k̃

(OB), min
x∈Y k

OB
x −

K∑
k̃>k

hb
Y k̃

(OB)1{x∈Y k̃}


. (1)

The first term of the minimand is the remaining mass of agents of type b who are not yet

assigned via the inductive process. The second term of the minimand is the amount of the

set Y k still available from the offer vector OB given the mass of each contract in Y k taken in

earlier steps of the inductive process. Intuitively, each buyer type is assigned the maximum

possible amount of that buyer type’s favorite set of contracts Y K given the offer vector OB;

having done so, that buyer type is then assigned the maximal amount of that buyer type’s

second favorite set of contracts Y K−1 from what is left, and so on. We may then define the

choice function for buyers of type b as

C̄b
x(OB) ≡

∑
{x}⊆Y⊆Xb

hbY (OB)

given an offer vector OB, i.e., C̄b
x(OB) is the mass of x contracts chosen by buyers of type b

when these buyers have access to OB.1414 We define hs(OS) for each seller and C̄s
x(OS) for each

seller analogously. This formulation is equivalent to the usual formulation in finite economies,

where OB is an offer set and the choice function of the buyers is just the union of the choice

function of each buyer.
14We use the C̄b notation, as opposed to Cb, to denote that the choice is with respect to all buyers of type

b, not just one buyer of type b.
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We can now define the following generalized Gale-Shapley operator1515

Φ(OB, OS) ≡ (ΦB(OS),ΦS(OB)) (2)

ΦB
x (OS) ≡ C̄s(x)

x ((OS
Xr{x}, θ

s(x)))

ΦS
x(OB) ≡ C̄b(x)

x ((OB
Xr{x}, θ

b(x))).

Given an offer vector OS available to the sellers, the mass of contract x available to the

buyers, ΦB
x (OS), is defined by the mass of contract x that sellers would be willing to take if

θs(x) of the contract x (i.e., the maximum amount sellers could demand) was available and a

mass of every other contract y equal to OS
y was available.

Since C̄b(·) and C̄s(·) are continuous functions for all b ∈ B and s ∈ S, it follows

immediately that Φ is a continuous function from (×x∈X [0, θb(x)]) × (×x∈X [0, θs(x)]) to

(×x∈X [0, θb(x)]) × (×x∈X [0, θs(x)]). Hence, by Brouwer’s fixed point theorem, there exists

a fixed point.

To complete the proof, all that is necessary is to ensure that fixed points of Φ do, in fact,

correspond to stable outcomes, which is established by the following lemma.

Lemma 1. Suppose that (OB, OS) = Φ(OB, OS). Then if buyers’ preferences are substitutable,
15This type of operator is standard in the matching with contracts literature. This particular operator

is not a direct analogue of the generalized Gale-Shapley operator of Hatfield and MilgromHatfield and Milgrom (20052005) and
Hatfield and KominersHatfield and Kominers (20122012); rather, it is most closely related to the operator of OstrovskyOstrovsky (20082008), who
considers whether a contract would be chosen by an agent given the other contracts that agent currently has
access to. The analogue to our operator in the discrete setting is given by

Φ(XB , XS) ≡ (ΦB(XS), ΦS(XB))
ΦB(XS) ≡ {x ∈ X : x ∈ CS(XS ∪ {x})}
ΦS(XB) ≡ {x ∈ X : x ∈ CB(XB ∪ {x})}.

When preferences of both buyers and sellers are substitutable, this operator is also monotonic, implying the
existence of fixed points by Tarski’s theorem. Furthermore, a stronger result regarding the relationship between
fixed points and stable outcomes can be shown for this operator than the operator of Hatfield and MilgromHatfield and Milgrom
(20052005) and Hatfield and KominersHatfield and Kominers (20122012): In particular, there exists a one-to-one correspondence between
fixed points and stable outcomes when all agents’ preferences are substitutable. Moreover, if (XB , XS) is a
fixed point, then XB ∩XS is a stable outcome, XB r XS is the set of contracts desired by the sellers but
rejected by the buyers (at the outcome XB ∩XS), XS rXB is the set of contracts desired by the buyers but
rejected by the sellers (at the outcome XB ∩XS), and X r (XB ∪XS) is the set of contracts rejected by
both buyers and sellers (at the outcome XB ∩XS).
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Figure 4: An economy without a stable outcome. An arrow denotes a contract.

((hb(OB))b∈B, (hs(OS))s∈S) is a stable outcome.

Proof. See Appendix AA.

Stable outcomes correspond to fixed points of the generalized Gale-Shapley operator as

for any fixed point (OB, OS), if Z blocks ((hb(OB))b∈B, (hs(OS))s∈S), then for each z ∈ Z,

some buyers of the associated type b(z) will choose z from their current set of contracts

and z, as the preferences of each buyer type are substitutable. But then each seller must

have access to all the contracts in Z; but if Z blocks ((hb(OB))b∈B, (hs(OS))s∈S), then some

measure of each of the associated seller types will choose all of the corresponding contracts

in Z, implying that (OB, OS) is not a fixed point.

While substitutability of buyers’ preferences is enough to ensure that a stable outcome

exists, it is not sufficient for any of the standard structural results on the set of stable

outcomes. It is straightforward to construct an example of a many-to-one market where the

set of stable outcomes does not form a lattice (in the usual way) and in which the conclusion

of the rural hospitals theorem of RothRoth (19861986) does not hold.

However, if the preferences of both sides are not substitutable, then a stable outcome does

not necessarily exist, even when there is a continuum of agents and contracts are bilateral.

To see this fact, we formalize the example given in Section 22 as Example 22 and show that no

stable outcome exists.

Example 2. Suppose that B = {b, b̂} and S = {s} (with θs = θb = θb̂ = 1) and suppose

that X = {x, y, ŷ}, where b(x) = b(y) = b, b(ŷ) = b̂, and s(x) = s(y) = s(ŷ) = s; such an

economy is depicted in Figure 44.
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Let the preferences of the three agents be given by:

b : {x, y} �s ∅

b̂ : {ŷ} �ŝ ∅

s : {x, ŷ} �b {x, y} �b ∅.

No stable outcomes exist. It is immediate that in any stable outcome, individual rationality

imposes that mb
x = mb

y and that ms
y +ms

ŷ = ms
x; hence, ms

ŷ = 0. Suppose that mb
x = 0; then

mb
{x,y} = ms

{x,y} = 0 and {x, y} is a block. Suppose that mb
x > 0; then ms

{x,y} = mb
{x,y} > 0

and {ŷ} is a block.

The above example shows that stable outcomes do not necessarily exist when preferences

of agents on both sides of the market are not substitutable, even when a continuum of agents

is present. In Example 22, the key issue is that, when considering blocking sets, we allow seller

s to break one of his contractual obligations (in this case, dropping y) without affecting the

other contracts he has access to; however, since buyer b has non-substitutable preferences,

when buyer b no longer has access to contract y, he also no longer wants to participate in x

(which, since s does not have substitutable preferences, would imply that s no longer wishes

to agree to y or ŷ).1616

Furthermore, even when all agents’ preferences are substitutable, our results rely on

the acyclic nature of the network structure, i.e., the fact that no agent may both buy

from and sell to another agent, even through intermediaries. In our setting, the acyclicity

follows immediately from the two-sided nature of the market. However, consider the more

general setting of OstrovskyOstrovsky (20082008) and Hatfield and KominersHatfield and Kominers (20122012); in that setting, an

agent can act as both a buyer and a seller. Redefine the contract x in Example 22 so that

b(x) = s and s(x) = b; in this case, the model is no longer acyclic, as b both buys from and

sells to s. However, the preferences of b, b̂, and s are (fully) substitutable in the sense of
16However, it is not necessary that a buyer-seller pair have multiple possible contracts between them (as

they do in Example 22) in order to construct an example where no stable outcome exists.
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Hatfield and KominersHatfield and Kominers (20122012). But since there is no stable outcome in Example 22, simply

relabeling the buyer and seller of a particular contract should not induce a given outcome to

become stable.

4.3 A Maximal Domain Result for the Existence of Stable Out-

comes

A natural question is to what extent the requirement of substitutable preferences on one side of

the market is necessary for the existence of stable outcomes. It is easy to find examples without

substitutable preferences on one side where stable outcomes exist. Therefore, substitutable

preferences on one side are not strictly necessary for existence. We now state a maximal

domain result that establishes a precise sense in which this condition is tight.

Proposition 1. Fix an assignment b : X → B of contracts to buyers, and suppose a buyer

type b has preferences that are not substitutable over the set of contracts Xb and that there is at

least one contract x̂ and buyer type b̂ 6= b such that b(x̂) = b̂. Then there exist an assignment

of sellers to contracts s : X → S, substitutable preferences for b̂, arbitrary preferences for the

seller types, and masses of each type such that no stable outcome exists.

Proof. See Appendix AA.

Proposition 11 says that, if a single buyer does not have substitutable preferences, then it

is possible to construct an economy in which other buyers have substitutable preferences but

no stable outcome exists. Intuitively, if a buyer type does not have substitutable preferences,

then we can construct an economy like that of Example 22 in which no stable outcome exists.

We highlight two important caveats about our maximal domain result: First, maximal

domain results are not the same as necessary conditions for existence; as noted before, it is

easy to construct economies for which multiple buyers and sellers have non-substitutable

preferences that nevertheless have stable outcomes. Second, Proposition 11 shows that the

set of preferences where sellers have unrestricted preferences and buyers have substitutable
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preferences is a maximal domain, in the sense that including any additional preference profiles

in this class makes it possible that a stable outcome does not exist. Moreover, in principle,

there may exist restrictions on the preferences of buyers other than those in Proposition 11

that ensure the existence of stable outcomes. Maximal domain results are common in the

matching literature (see, e.g., Gul and StacchettiGul and Stacchetti (19991999) and Kamada and KojimaKamada and Kojima (20182018))

and these are standard caveats.

4.4 Differences Between Matching Theory and General Equilib-

rium Theory

Our results imply two substantial differences between matching theory and general equilibrium

theory. In general equilibrium theory, in large markets equilibria exist under mild regularity

conditions and the set of equilibria coincides with the core. Our results show that neither of

these two conclusions hold in matching theory.

These differences can be seen in the setting of Example 22. In that example, a stable

outcome does not exist, even with a continuum of agents. However, a core outcome, defined

formally below, does exist. The core outcome m is given by ms
{x,y} = mb

{x,y} = 1 and mi
Z = 0

(for i ∈ {b, s, ŝ} and Z ⊆ X) otherwise.1717 Example 22 also helps us understand the intuition

behind these differences: Recall that the definition of stability allows agents who form a block

to keep some of their old contracts while signing new contracts with each other. By contrast,

the definition of the core requires that a coalition do better only by signing contracts among

itself. The core outcome m is not stable because a buyer b can drop the contract y with a

seller s while retaining the contract x with that seller. This makes the existence of stable

outcomes more demanding.

More generally, Theorem 11 and Proposition 11 show that the existence of stable outcomes

depends on substantial restrictions on preferences even in large markets, unlike the findings of
17This outcome is in the core as no coalition can improve their joint outcome; b is only better off if he

obtains both x and ŷ (and drops contract y), but this requires s to agree even though such an outcome is not
even individually rational for s.
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the general equilibrium literature. Theorem 22 below shows that the core is always non-empty.

Thus, these differences between matching theory and general equilibrium theory are a more

general phenomenon than the setting of Example 22.

4.5 Stable Outcomes in Large Finite Economies

We now extend our model to consider the case where there is a large but finite number of

agents. Define a finite economy as a vector n = (ni)i∈I , specifying a non-negative integer of

agents of each type. We denote by |n| the number of agents in economy n. For any positive

integer k, we will refer to the economy k · n as the k-replica of economy n.

A vector (mi
Z)i∈I,Z⊆Xi is a stable outcome of the finite economy n if it is a stable outcome

in the continuum model with θ = n and all of the coordinates of m are integers. We say that

the finite economy n has an outcome that is stable excluding α agents if there exists a finite

economy n̄ with a stable outcome such that n̄i ≤ ni for all i ∈ I and |n| ≤ |n̄|+α. Intuitively,

n has an outcome that is stable excluding α agents if there exists another finite economy n̄

created by excluding up to α agents from n such that n̄ has a stable outcome. Essentially,

if n has an outcome that is stable excluding α agents, then there exists a feasible outcome

for n such that every agent receives an individually rational allocation and any blocking set

must involve a contract with at least one of those α agents. We have the following result.

Proposition 2. Consider a finite economy n, and assume that all buyers have substitutable

preferences. There exist positive integers α and β such that:

1. Any replica of n has an outcome that is stable excluding α agents.

2. For any k that is an integer multiple of β, the k-replica of n has a stable outcome.

Proof. See Appendix AA.

The first part of the proposition shows that, regardless of the size of a replica, it is always

possible to exclude a fixed, finite number of participants and achieve a stable outcome. In
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particular, as the size of the replica grows, the fraction of agents who have to be excluded is

of the order of 1
k
. The second part of the proposition shows that, in any replica that is a

multiple of some integer, an exact stable outcome exists.

Proposition 33 follows by considering a continuum economy with the mass of each type i

corresponding to ni. Theorem 11 then implies the continuum economy has a stable outcome;

moreover, it can then be shown that a stable outcome exists with a rational number of agents

engaging in each set of contracts. Thus, by taking a large enough k-replica of our economy,

we can ensure that there exists an exact stable outcome, which establishes the second part of

the proposition. The first part of the proposition then follows.

We now consider an example to illustrate three points: approximately stable outcomes

are a reasonable equilibrium prediction in a large market, they can be a compelling market

design objective, and they can be applied to situations where the existence of an exact stable

outcome depends on restrictive assumptions.

Example 3. In this example, we apply our model to the setting of school choice match-

ing with diversity constraints discussed by AbdulkadiroğluAbdulkadiroğlu (20052005), Hafalir et al.Hafalir et al. (20132013),

Kominers and SönmezKominers and Sönmez (20162016), and Fragiadakis and TroyanFragiadakis and Troyan (20172017), among others. There are

two types of students: high-ability students, denoted by h, and low-ability ability students,

denoted by `. There are two schools: a school subject to diversity constraints, and a school

not subject to diversity constraints. We model these schools by assuming there are two types

of “school agents”, c and c̄, corresponding, respectively, to the two schools in this market;

hence, as the market grows large the size of each school will increase (by allowing the number

of agents of types c and c̄ to increase). The set of contracts is the set of student–school agent

pairs, i.e., X = {(h, c), (`, c), (h, c̄), (`, c̄)}.

The constrained school, i.e., the school corresponding to agents of type c, is required to

admit at least as many low-ability students as high-ability students, and so we model this
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requirement by letting the preferences of an agent of type c be given by

c : {(h, c), (`, c)} � {(`, c)} � ∅.

Meanwhile, the unconstrained school, i.e., the school corresponding to agents of type c̄, has no

restrictions on whom it may admit, and prefers high-ability students to low-ability students.

We model this by letting the preferences of an agent of type c̄ be given by

c̄ : {(h, c̄)} � {(`, c̄)} � ∅.

The preferences of the high-ability and low-ability students are given by

h : {(h, c)} � {(h, c̄)} � ∅

` : {(`, c̄)} � {(`, c)} � ∅.

Consider first a finite economy (1, 1, 1, 1), i.e., an economy where there is one agent of

each type.1818 Then no stable outcome exists. If both students are matched to the constrained

school (i.e., the outcome {(h, c), (`, c)}), then the unconstrained school can block the outcome

by attracting the low-ability student (i.e., {(`, c̄)} is a blocking set). But the outcome

{(h, c), (`, c̄)}} is also not stable, as once the low-ability student attends the unconstrained

school, the constrained school violates its diversity constraint; hence, the constrained school

then has to reject the high-ability student, i.e., {(h, c), (`, c̄)}} is not individually rational.

Nor is the outcome {(`, c̄)} stable, as then the high-ability student wishes to attend c̄, i.e.,

{(h, c̄)} is a blocking set. Finally, {(h, c̄)} is not stable, as the large school can attract both

students, i.e., {{(h, c), (`, c)}} is a blocking set.1919

Moreover, no stable outcome exists for any economy of the form k · (1, 1, 1, 1), where k is
18Note that this corresponds to there being two “seats” at the constrained school but only one seat at the

unconstrained school.
19The only other individually rational outcome, ∅, is also blocked by {(h, c), (`, c)}.
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an odd integer. For example, if k = 101, the outcome where the constrained school has 51

students of each type and the unconstrained school has 50 students of each type is unstable,

as the unconstrained school will wish to attract one more low-ability student, and such a

student will wish to attend the unconstrained school.

Consider now the continuum model, where θ = (1, 1, 1, 1). Then a stable outcome m exists,

where m is given by mh
{(h,c)} = mh

{(h,c̄)} = 1
2 ,m

`
{(`,c)} = m`

{(`,c̄)} = 1
2 ,m

c
{(h,c),(`,c)} = mc

∅ = 1
2 and

mc̄
{(h,c̄)} = mc̄

{(`,c̄)} = 1
2 , with all other entries of the matrix m being zero. That is, it is a

stable outcome for half of the students of each type to attend the school subject to diversity

constraints, and for half of the students of each type to attend the unconstrained school.

In this outcome, the unconstrained school is at capacity, and so does not wish to poach

low-ability students from the constrained school; moreover, all of the high-ability students

are either at the unconstrained school or prefer their current placement to the unconstrained

school. The constrained school is under capacity, but is up against its diversity constraint;

hence, it is only willing to accept low-ability students, but all such students are already either

at the constrained school or they prefer their current placement to the constrained school.

Consider now a k-replica of the (1, 1, 1, 1) economy. If k is even, the continuum stable

outcome corresponds to an exact stable outcome of the k-replica economy. Hence, we have

that β = 2 in Proposition 22 for this economy. Moreover, we can always find a feasible

outcome for the finite economy for which at most one student is unmatched, i.e., α = 1 in

Proposition 22 for this economy. Hence, when k is odd, it is a plausible prediction that each

school will be matched to about k
2 students of each type.

Moreover, an approximately stable outcome is also a reasonable allocation from a market

design perspective. A clearinghouse could not ensure finding an exact stable outcome in

this setting; however, the clearinghouse could implement an approximately stable outcome.

Which approximately stable outcome to implement depends on institutional details of the

application in question: One option is to allow the constrained school to have an extra

high-ability student. Another option would be to artificially reduce the capacity of the
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unconstrained school by one.2020

Our Theorem 11 is also related to the issue of the existence of stable outcomes in matching

markets with couples. RothRoth (1984a1984a) first noted that couples may provide a challenge to

the National Resident Matching Program (NRMP), as the preferences of couples are not

substitutable, and hence the existence of a stable outcome in finite markets is not guaranteed.2121

Nevertheless, stable outcomes do exist in all the empirical instances studied by RothRoth (20022002).

While our work does not imply the existence of exact stable outcomes even in large finite

markets, it does show that at least approximately stable outcomes always exist.2222

We also highlight two important caveats to our results on stability in large finite markets.

Note that we find that existence of a stable outcome is much easier to guarantee in a continuum

model. This implies that many, but not all, of the existence problems in the literature on

finite markets are due to divisibility problems. However, these divisibility problems can still

be important for two reasons: First, it may be that approximate stability is not adequate in

certain market design applications. Second, our approximate results for large finite markets

have two important limitations: The kind of limit that is relevant may not be our limit of

replicas with a finite number of types of each agent, and it may be that our approximations

are not quantitatively tight enough for certain applications. This points to the importance of

both exact existence results with a finite number of agents and of tight approximations that

depend on more structure, such as in the work of Nguyen and VohraNguyen and Vohra (20182018).
20BudishBudish (20112011) proposes a similar idea for the setting of course allocation; he suggested slightly lowering

the capacity for some classes in order to implement an approximate competitive equilibrium from equal
incomes. Nguyen and VohraNguyen and Vohra (20182018) proposed a similar idea for matching in a model with more structure
than ours. In their setting, they are able to find sharp bounds on how much both aggregate capacity and the
capacity of each school has to be changed.

21Dutta and MassóDutta and Massó (19971997) consider more broadly the question of when stable outcomes exist when one
side has preferences over colleagues. The particular difficulty of matching couples in the NRMP has generated
an extensive literature on the types of preferences for couples for which stable matches may be guaranteed to
exist: see Klaus et al.Klaus et al. (20072007), Klaus and KlijnKlaus and Klijn (20072007), and Haake and KlausHaake and Klaus (20092009).

22See also work by Kojima et al.Kojima et al. (20132013) and Ashlagi et al.Ashlagi et al. (20142014), who show that the probability of a stable
outcome approaches 1 as the market grows large under certain assumptions on how the market grows.
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5 The Core in Large Economies

5.1 Framework

In this section we show that the core of a large matching market exists under mild conditions.

In particular, we allow for general trading networks and for contracts with multiple parties.

There is a finite set I of agent types. For each i ∈ I, there exists a mass θi of agents of type i.

There is a finite set of roles, X , and each role x ∈ X is identified with a unique agent type a(x ).

For a set of roles Y ⊆ X , let a(Y ) = ∪y∈Y {a(y)} and denote by Yi the set of roles associated

with agent i, i.e., Yi ≡ {y ∈ Y : a(y) = i}. Each agent type i ∈ I has a weak preference order

%i over sets of roles in Xi. A contract x is a set of roles, i.e., x ⊆ X . Denote by X the set

of all contracts. Each contract is composed of contract-specific roles, i.e., x ∩ y = ∅ for all

distinct x, y ∈ X.

Definition 4. An outcome is a vector (mi)i∈I , where mi ∈ [0, θi]℘(Xi), such that both:

1. For all i ∈ I, we have that ∑
Z⊆Xim

i
Z = θi.

2. For all x ∈ X, for all roles x , y ∈ x, we have that

∑
{x }⊆Z⊆Xa(x )

m
a(x )
Z =

∑
{y}⊆Z⊆Xa(y)

m
a(y)
Z . (3)

The first condition of Definition 44 ensures that each type of agent is fully assigned to

some set of roles (possibly including the empty set). The second condition of Definition 44

ensures that “supply meets demand”—that is, for each contract, each role has an equal mass

of agents (of the appropriate type) performing that role.

We illustrate the model of Section 55 by embedding the economy of Example 11 into this

framework. The set of contracts, set of agent types, and masses of each type of agent are

the same as in Example 11. The roles available to type b agents are Xb = {bx, by} and to

type s agents are Xs = {sx, sy}. The contract x = {bx, sx} and the contract y = {by, sy}. The
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preferences of agents of type b are given by {bx, by} �b ∅ and the preferences of agents of

type s are given by {sx} �s {sy} �s ∅.

We now define the core. An outcome m is blocked by a non-zero vector (m̃i)i∈I , where

m̃i ∈ [0, θi]℘(Xi) if both:

1. For all types i, for each set of roles Z such that m̃i
Z > 0, there exists a set of roles Y

such that mi
Y > 0 and Z �i Y .

2. For all x ∈ X, for all roles x , y ∈ x, we have that

∑
{x }⊆Z⊆Xa(x )

m̃
a(x )
Z =

∑
{y}⊆Z⊆Xa(y)

m̃
a(y)
Z . (4)

The first condition ensures that for each set of roles specified by m̃ there exists a positive

mass of agents (of the appropriate type) willing to take on that set of roles. The second

condition ensures that for each contract specified by m̃ there is an equal mass of agents (of

the appropriate type) performing each role required by that contract.

Definition 5. An outcome m is in the core if it is not blocked.

This is the standard concept of the core; an outcome is in the core if there is no blocking

coalition of agents who can do better on their own, forgoing relationships outside of the

blocking coalition. The concept of stability differs from that of the core in two ways: First,

under stability, agents in the blocking set may “hold onto” currently held contracts while

taking on new relationships; this makes stability a harder condition to satisfy than the core.

Second, under the core, a blocking coalition need only make every agent in the coalition

(strictly) better off, while, under stability, every agent in the coalition must be willing to

choose every contract in the blocking set given his current set of contracts; this makes

stability an easier condition to satisfy than the core. In general, there is no straightforward

relationship between the core and the set of stable outcomes; for instance, BlairBlair (19881988)

27



provides an example of a many-to-matching setting (with discrete agents) in which there is a

unique core outcome and a different unique stable outcome.

However, in Example 11, the unique core outcome m is for half of the b-type agents to

engage in the roles bx and by while the other half does not engage in any roles; meanwhile, half

of the s-type agents engage in the role sx and half engage in the role sy. In this example, the

unique core outcome corresponds to the unique stable outcome; however, this correspondence

does not hold in general.

5.2 Existence

The main result of this section is that the core exists very generally.

Theorem 2. A core outcome exists.

Theorem 22 is consistent with the literature on the core in cooperative game theory and

general equilibrium theory. That literature has shown that the core does not necessarily exist

in games with a finite number of players; existence typically depends on a type of assumption

called balancedness, introduced by ScarfScarf (19671967) (in the case without transferable utility).

While balancedness is a substantial assumption, there are several results on the non-emptiness

of the core, or of an approximation of the core, in large games; these results demonstrate

non-emptiness under mild assumptions. These include classic results for exchange economies

such as those of AumannAumann (19641964, 19661966) and results for coalition-formation games with both

transferable and non-transferable utility, such as those of WoodersWooders (19831983), Wooders and ZameWooders and Zame

(19841984), and Kaneko and WoodersKaneko and Wooders (19861986). The proof of our existence theorem is an application

of Theorem 1 of Kaneko and WoodersKaneko and Wooders (19861986) to our setting.

The intuition for our core existence theorem is natural given these earlier results. However,

the existence theorem is surprising when compared to our results on stable outcomes; the

existence of stable outcomes even in large markets depends on substantial assumptions on

preferences. The reason for this difference is that, in the definition of stability, agents can

28



block an outcome while keeping some of their old contracts. By contrast, in the core definition,

a coalition of agents can only form a block by trading with each other. This additional

flexibility when considering blocks makes the existence of stable outcomes much harder to

guarantee, consistent with our results.

5.3 Large Finite Economies

As with stability, the existence of the core in a continuum economy can be used to derive an

approximate existence result for large finite economies.

Define a finite economy as a non-negative integer vector n = (ni)i∈I specifying the number

of agents of each type. The number of agents in economy n is denoted by |n|. A k-replica of

economy n is denoted k · n. A vector (mi
x )i∈I,x∈Xi is a core outcome of a finite economy if it is

a core outcome of the continuum model with θ = n where each coordinate of m is an integer.

A finite economy n has a core outcome excluding α agents if there exists a finite economy n̄

with a core outcome such that n̄i ≤ ni for all i ∈ I and |n| ≤ |n̄|+ α.

Proposition 3. For every finite economy n there exist positive integers α and β such that:

1. Any replica of n has a core outcome excluding α agents.

2. For any k that is an integer multiple of β, the k-replica of n has a core outcome.

Proof. See Appendix AA.

Proposition 33 guarantees that, in a large replica economy, there is always an allocation

that is an approximate core outcome. Intuitively, since an economy with a continuum of

agents has a core outcome, it is possible to arrange most agents in any large finite replica

into this outcome with only a bounded number of agents being assigned to different bundles

of contracts.
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6 Competitive Equilibria in Large Economies

6.1 Framework

We now consider the setting of Hatfield et al.Hatfield et al. (20132013), where agents have quasilinear utility

with respect to a numeraire commodity in ample supply. There is a set of agent types I, and a

finite set of trades Ω. An agent of type i ∈ I is endowed with the valuation function ui(Φ,Ψ),

where Φ ⊆ Ω represents the trades for which agent i is a buyer, and Ψ ⊆ Ω represents the

trades for which agent i is a seller. We allow ui(Φ,Ψ) to take on any value in [−∞,∞) for

each Φ ⊆ Ω and each Ψ ⊆ Ω. We normalize the outside option as ui(∅,∅) = 0 for each

i ∈ I.2323

A price vector p ∈ RΩ assigns a price pω for each trade ω ∈ Ω. Given a vector of prices p,

define expenditure as the vector ep ∈ R℘(Ω)×℘(Ω) such that

ep(Φ,Ψ) =
∑
ϕ∈Φ

pϕ −
∑
ψ∈Ψ

pψ.

That is, ep(Φ,Ψ) is the net transfer paid by an agent buying Φ and selling Ψ. Hence, the

utility of a type i agent who buys contracts Φ ⊆ Ω and sells contracts Ψ ⊆ Ω at prices p is

given by

ui(Φ,Ψ)− ep(Φ,Ψ).

An economy is given by a Lebesgue measurable distribution η over I, defined over a

σ-algebra, and with η(I) <∞. ui is a measurable function of i.

An allocation is a measurable map

A : I → ∆(℘(Ω)× ℘(Ω))
23Note that, unlike in Hatfield et al.Hatfield et al. (20132013), we allow here for any type of agent to buy (or sell) any contract.

The constraint that a type cannot transact a contract is incorporated by setting the utility of buying (selling)
that contract to −∞.
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specifying for each type i ∈ I a distribution Ai over bundles of trades bought and sold. The

space of allocations is denoted A. Denote by Ai(Φ,Ψ) the proportion of agents of type i

who buy the bundle of trades Φ ⊆ Ω and sell the bundle of trades Ψ ⊆ Ω.

Given an allocation A, we define the excess demand for each i ∈ I and for each trade

ω ∈ Ω as

Ziω(A) ≡
∑

{ω}⊆Φ⊆Ω

∑
Ψ⊆Ω

Ai(Φ,Ψ)−
∑

{ω}⊆Ψ⊆Ω

∑
Φ⊆Ω

Ai(Φ,Ψ).

Define the excess demand for each trade ω ∈ Ω for the entire economy as

Zω(A) ≡
∫

Ziω(A) dη.

An allocation A is feasible if Z(A) = 0. An arrangement [A; p] is comprised of an allocation

A and a price vector p ∈ RΩ.

Definition 6. An arrangement [A; p] is a competitive equilibrium if it satisfies two conditions:

1. Each agent obtains an optimal bundle given prices p, i.e., for all i ∈ I, Ai(Φ,Ψ) > 0

only if

(Φ,Ψ) ∈ arg max
(Φ̃,Ψ̃)∈℘(Ω)×℘(Ω)

ui(Φ̃, Ψ̃)− ep(Φ̃, Ψ̃).

If this is the case we say that A is incentive compatible given p.

2. A is a feasible allocation, i.e., Z(A) = 0.

This is the standard notion of competitive equilibrium: the first condition ensures that

each agent is optimizing given the prices p, and the second condition ensures that markets

clear.

Finally, we will require some technical conditions in order to ensure the existence of a

competitive equilibrium. An economy is regular if

1. The integral of absolute values of utility is finite, as long as agents are not given bundles
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for which they have utility of −∞. That is,

∫
max

Φ,Ψ⊆Ω,ui(Φ,Ψ) 6=−∞
|ui(Φ,Ψ)| dη <∞.

2. Agents can supply any sufficiently small net demand for trades.2424 That is,

{Y ∈ RΩ : ∃A ∈A such that Y = Z(A) and ui(Φ,Ψ) = −∞⇒ Ai(Φ,Ψ) = 0}

contains a neighborhood of 0.

These conditions are satisfied if, for instance, utility functions are uniformly bounded.

This model is closely related to the work of Ellickson et al.Ellickson et al. (19991999), who consider a very

general model of club formation in general equilibrium. It is possible to write down our model

as a particular case of the Ellickson et al.Ellickson et al. (19991999) model.2525 Ellickson et al.Ellickson et al. (19991999) establish

the existence of an equilibrium very generally. The reason why we cannot simply apply

their result is that one of their regularity conditions is that endowments of private goods are

bounded, which precludes the quasilinear case that we consider. The condition of bounded

endowments is important for their result, because in the example in footnote 2424 equilibria do

not exist with unbounded endowments of the numeraire. Thus, our theorem is a technical

extension of their Theorem 5.1 to settings with transferable utility.
24This condition rules out the case where there are no agents willing to sell a trade but demand is positive

at any finite price. For example, if there is only one trade, Ω = {ω}, all agents have utility −∞ when they are
net sellers, and there are agents with arbitrarily high utility from being a net buyer, there is no equilibrium.
The assumption rules out this example and similar cases involving sets of trades.

25One simple way to embed our model in the Ellickson et al.Ellickson et al. (19991999) notation (pp. 1192–1194) is as follows.
Consider the case where no agent is allowed to buy and sell the same trade, in the sense that the utility of
doing so is −∞. Then we can define the set of external characteristics as {b, s, n}Ω recording whether each
agent can be a buyer, seller, or neither in each trade. Then define the set of clubs as having one club for
each combination of a trade, a personal characteristic that allows an agent to buy the trade, and a personal
characteristic that allows an agent to sell the trade. Define this club as having a single activity, and a profile
with one member who is a buyer and one member who is a seller.
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6.2 Existence

We now establish existence of an equilibrium. To do so, we follow a proof technique pioneered

by Gretsky et al.Gretsky et al. (19921992, 19991999) in the continuum assignment problem: We first show that there

exists an allocation that maximizes total surplus. We then show that a surplus maximizing

allocation is an equilibrium, when coupled with a vector of prices equal to the marginal social

values of increasing the supply of each trade.

Theorem 3. Every regular economy has a competitive equilibrium.

Given prices p and an allocation A, denote the average utility received and prices paid by

agents of type i as

ui · Ai ≡
∑

Φ,Ψ⊆Ω
ui(Φ,Ψ) · Ai(Φ,Ψ)

ep · Ai ≡
∑

Φ,Ψ⊆Ω
ep(Φ,Ψ) · Ai(Φ,Ψ)

To prove the theorem, we introduce the social welfare function W(q), which denotes

the maximal social welfare that may be attained by an allocation A such that Z(A) = q.

Formally,

W(q) ≡ sup
{A∈A:Z(A)=q}

∫
ui · Ai dη.

W(q) attains its supremum as the argument of the supremum is a continuous function and

the supremum is taken over a compact space for a suitably defined topology. We note this as

a claim.

Claim 1. W(q) attains its supremum. Formally,

W(q) = max
{A∈A:Z(A)=q}

∫
ui · Ai dη.

Proof. See Appendix AA.

The social welfare function also satisfies the following properties:
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1. W is uniformly bounded above:

W(q) ≤
∫

max
Φ,Ψ⊆Ω

ui(Φ,Ψ) dη

for any q ∈ RΩ, and this latter quantity is finite in a regular economy.

2. W(q) > −∞ for all q in a neighborhood of 0: By parts 1 and 2 of the definition of

a regular economy, for any vector q with small enough norm there are enough agents

to absorb the excess of any trades while incurring only finite disutility, and hence

W(q) > −∞.

3. W is concave: Consider any two stocks q and q̃ in RΩ, and let

A ∈ arg max
Â∈{Ȧ∈A:Z(Ȧ)=q}

∫
ui · Âi dη

Ã ∈ arg max
Â∈{Ȧ∈A:Z(Ȧ)=q̃}

∫
ui · Âi dη.

For each α ∈ [0, 1], we have that Z(αA+ (1−α)Ã) = αq+ (1−α)q̃ ≡ q̄. Hence, letting

Ā ≡ (αAi + (1− α)Ãi), we have that

W(q̄) ≥
∫
ui · Āi dη

=
∫
ui · (αAi + (1− α)Ãi) dη

= α
∫
ui · Ai dη + (1− α)

∫
ui · Ãi dη

= αW(q) + (1− α)W(q̃).

These properties imply that W(0) attains a maximum at some allocation A. Moreover,

there exists at least one supergradient p of W at q = 0.2626 The arrangement [A; p] satisfies

the market clearing condition of Definition 66, that is, Z(A) = 0. Let J be the set of types
26This follows from Theorem 23.4 of RockafellarRockafellar (19701970) because W is concave, and properties 1 and 2 on

page 3333 imply that W is proper and that 0 is in the relative interior of the domain of W.
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such that some agents of that type do not get optimal bundles given prices p.

We will now show that η(J) = 0. To demonstrate this, we will show that η(J) > 0 leads

to a contradiction. Let Ã be an allocation such that Ãi = Ai for IrJ and Ãi is a distribution

over optimal bundles given p otherwise, and let q̃ = Z(Ã). We have

W(q̃) ≥
∫
ui · Ãi dη

>
∫
ui · Ai − (ep · Ai − ep · Ãi) dη

= W(0)− p · Z(A) + p · Z(Ã) = W(0) + p · q̃.

The first inequality follows from the definition of W. The second inequality from the fact

that all agents prefer to buy Ã to A, and the strictness of the inequality follows as η(J) > 0.

In the third line, the first equality follows from the optimality of A and the second equality

follows from the definition of q̃. The result that W(q̃) > W(0) + p · q̃ contradicts the fact

that p is a supergradient. The contradiction implies that η(J) = 0.

To complete the proof of Theorem 33, note that η(J) = 0 implies that Z(Ã) = 0. Moreover,

Ã is incentive compatible given p by definition. Therefore, [Ã; p] is an equilibrium.

Besides the club theory literature and Ellickson et al.Ellickson et al. (19991999), our setting is related to

models of general equilibrium with indivisible commodities. In general equilibrium with

indivisibilities and a finite number of agents, a number of papers (Gul and StacchettiGul and Stacchetti, 19991999,

20002000; Sun and YangSun and Yang, 20062006, 20092009; Hatfield et al.Hatfield et al., 20132013) show the existence of competitive

equilibrium under the assumption that preferences are substitutable or other restrictions on

preferences (Baldwin and KlempererBaldwin and Klemperer, 20182018).2727 We do not impose substantive restrictions on
27Baldwin and KlempererBaldwin and Klemperer (20182018) approach this problem with a novel method by using techniques from

tropical geometry. They give necessary and sufficient conditions on preferences for the existence of equilibria
that are different than the substitutes conditions in the literature. It is easier to understand their approach
with a simple example, which we take from Azevedo et al.Azevedo et al. (20132013). Consider a setting with two indivisible
goods where a single unit of each good available. Sonia is willing to pay $75 for either good (or both). Charlie
is willing to pay $100 for both goods but has no value for a single item. No competitive equilibrium exists.
Most of the literature would attribute the non-existence of equilibria to the fact that Charlie views the goods
as complements. Baldwin and KlempererBaldwin and Klemperer, by contrast, note that as a price changes Sonia’s demand can
change in the directions (1, 0), (0, 1), and (1,−1), while Charlie’s demand can only change in the direction
(1, 1). Baldwin and KlempererBaldwin and Klemperer demonstrate that the fact that not all matrices formed by pairs of these vectors
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preferences but instead assume that the set of agents is a continuum. The most closely related

work is by Azevedo et al.Azevedo et al. (20132013), who prove the existence of competitive equilibria in the

setting of Gul and StacchettiGul and Stacchetti (19991999) in a model with a continuum of agents. We generalize

their result by allowing for relationship-specific utility and for the assumption that some

agents cannot engage in some trades (as in our model utility may take on the value −∞).

6.3 Efficiency and Uniqueness

A feasible allocation A is efficient if A maximizes welfare. That is, if, for any feasible

allocation Ã, ∫
ui · Ai dη ≥

∫
ui · Ãi dη. (5)

A competitive equilibrium [A; p] is efficient if A is efficient.

Proposition 4. Every competitive equilibrium is efficient.

Proof. See Appendix AA.

Economies with sufficiently rich preference heterogeneity have a unique equilibrium price

vector. To state this result we define the following notion of preference heterogeneity.

Definition 7. The distribution η has full support if, for every open set U ⊆ R℘(Ω)×℘(Ω) we

have η(IU) > 0, where

IU = {i ∈ I : the vector ui ∈ U}.

We can now state the uniqueness result.

Proposition 5. A regular economy where η has full support has a unique vector of competitive

equilibrium prices.

Proof. See Appendix AA.

have determinant 0 or ±1 implies that this class of demand functions can preclude existence of equilibrium.
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This result is analogous to the uniqueness result in Azevedo et al.Azevedo et al. (20132013). Intuitively, in

a market with sufficiently rich preferences, in equilibrium there are always agents who are

close to indifferent between engaging in a contract or not, and some of these marginal agents

are engaging in the contract, and some are not. This implies that, if external agents were to

supply or demand a small quantity of this contract, the gain or loss in social welfare would

be proportional to the equilibrium price. Mathematically, this implies that the function W is

differentiable at 0, and therefore that W has a unique supergradient. The fact that every

equilibrium price is a supergradient then implies that equilibrium prices are unique.

6.4 Large Finite Economies

A finite economy is defined as a vector n ≡ (ni)i∈I specifying the number of agents of each

type i. Each ni ∈ Z≥0 and ni = 0 for all but a finite set of types. The total number of agents

in the finite economy n is denoted |n|. Given a natural number k, the k-replica of the finite

economy n is the finite economy k · n, which has k copies of each agent present in n. The

∞-replica is the continuum economy ηn given by

ηn =
∑
i

ni

|n|
· δi,

where δi is Dirac delta function placing mass 1 on i. A finite economy is regular if its

∞-replica is regular.

An allocation of a finite economy n is an allocation A of the ∞-replica such that, for all i

with ni 6= 0, the coordinates of Ai are integer multiples of 1
ni
. A competitive equilibrium of a

finite economy is a pair [A; p] such that A is an allocation of the finite economy and [A; p] is

an equilibrium of the∞-replica. We say that a finite economy n has a competitive equilibrium

excluding α agents if there exists a finite economy n̄ with a competitive equilibrium such that

n̄i ≤ ni for all i ∈ I and |n| ≤ |n̄|+ α. As in the earlier sections, the intuition is that it is

possible to reach a competitive equilibrium by selecting α agents and either excluding them
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from trade or assigning them non-optimal, but individually rational, bundles.

The following proposition establishes an approximate existence result that is similar to

that in the non-quasilinear case.

Proposition 6. Consider a regular finite economy n. There exist positive integers α and β

such that:

1. Any replica of n has a competitive equilibrium excluding α agents.

2. For any k that is an integer multiple of β, the k-replica of n has a competitive equilibrium.

Proof. See Appendix AA.

7 Conclusion

This paper considers the existence of equilibria in large matching markets using ideas from

general equilibrium theory. We follow AumannAumann (19641964) in formalizing a large market as

having a continuum of agents. We find that stable outcomes exist under conditions that

are substantial, but much less restrictive than in the finite case. We show that, under

mild assumptions, the core of a large trading network is always non-empty, and that with

quasilinear preferences a competitive equilibrium always exists. Besides these contributions

to matching theory, our results also show that there are two large differences between general

equilibrium theory and matching theory: In matching theory, core convergence can fail and

the existence of stable outcomes depends on substantial conditions on preferences even in

large markets. Finally, from a technical perspective, we apply several ideas from general

equilibrium theory to matching-theoretic contexts; we hope this approach will be fruitful in

other problems in matching theory.
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A Proofs

A.1 Proof of Lemma 11

We first show that (((hb(OB))b∈B, (hs(OS))s∈S) is an outcome. Condition 11 of Definition 22

is satisfied as, for each b ∈ B, hb∅(OB) = θb −∑K
k=1 h

b
Y k(OB), and for each s ∈ S, hs∅(OS) =

θs −∑K
k=1 h

s
Y k(OS) by (11). To see that Condition 22 of Definition 22 is satisfied, suppose that

hs(x)
x (OS) < hb(x)

x (OB) for some x ∈ X.2828 There are two cases:

1. hs(x)
x (OS) = C̄s(x)

x ((OS
Xr{x}, θ

s(x))). Then OB
x = hs(x)

x (OS) by (22), hence hb(x)
x (OB) ≤

OB
x = hs(x)(OS), a contradiction.

2. hs(x)
x (OS) < C̄s(x)

x ((OS
Xr{x}, θ

s(x))). This implies by (11) that hs(x)
x (OS) = OS

x . But, by

(22), OS
x = C̄b(x)

x ((OB
Xr{x}, θ

b(x))) ≥ hb(x)
x (OB), which implies that hb(x)

x (OB) ≤ OS
x =

hs(x)(OS), a contradiction.

We now show that the outcome ((hb(OB))b∈B, (hs(OS))s∈S) is stable. It is immediate

that it is individually rational by the definitions of C̄b and C̄s. Suppose that there exists

a blocking set Z (and associated covers {Zb}b∈B and {Zs}s∈S, along with associated sets

{Y b}b∈B and {Y s}s∈S). Since the preferences of each buyer are substitutable, if z ∈ Zb,

then z ∈ Cb(z)({z} ∪ Y b). Hence, z ∈ Cb(z)({z} ∪ Y b) for each z ∈ Z. Hence, by (22), it must

be that OS
z = ΦS

z (OB) > hb(z)
z (OB) = hs(z)

z (OS) for all z ∈ Z (where the equalities follow as

(OB, OS) is a fixed point). But then any Zs can be chosen by the corresponding seller s, and

so (OB, OS) is not a fixed point.
28The case where h

s(x)
x (OS) > h

b(x)
x (OB) is analogous.
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A.2 Proof of Proposition 11

Since the preferences of buyer b are not substitutable, there exist contracts x, z ∈ Xb and a

set of contracts Y ⊆ Xb ∪ {x, z} such that

z /∈ Cb(Y ∪ {z})

and

z ∈ Cb({x} ∪ Y ∪ {z}).

Fix an assignment of contracts to sellers such that s(x) = s(z) = s(x̂) ≡ s. Fix the

preferences of each seller type so that:

• For each contract w ∈ Xb r (Y ∪ {x, x̂, z}), we have that w /∈ Cs(w)(W ∪ {w}) for all

W ⊆ Xs(w); that is, all contracts not in Y ∪{x, x̂, z} are unacceptable to their associated

seller.

• For each contract y ∈ Y , we have that y ∈ Cs(y)(W ∪ {y}) for all W ⊆ Xs(y); that is,

all contracts in Y are chosen by sellers of type s(y) regardless of the other contracts

available.

• Sellers of type s have preferences such that, for all W ⊆ Xs r {x, x̂, z}, we have that

{x̂, z} ⊆ Cs(W ∪ {x, x̂, z}) and x /∈ Cs(W ∪ {x, x̂, z}), {x, z} ⊆ Cs(W ∪ {x, z}), and

x, x̂ /∈ Cs(W ∪ {x, x̂}).

Fix the preferences of b̂ as {x̂} � ∅. Finally, let the mass of each type of agent i ∈ B ∪ S be

1, i.e., θi = 1.

We now show that no stable outcome exists. To reach a contradiction, assume that m is

stable outcome.

Step 1: ms
z = ms

x +ms
x̂. This follows from the individually rationality of m for s.
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Step 2: mb
x ≥ mb

z. Suppose not: Then there exists a set Z ⊆ Xb such that x /∈ Z, z ∈ Z,

and mb
Z > 0. Then Cb(Y ∪{z})rZ is either empty or a block;2929 but if Cb(Y ∪{z})rZ

is empty, then Z is not individually rational as z /∈ Cb(Y ∪ {z}). Thus m is not stable,

a contradiction.

Since m is an outcome, we must have that mp
y = mq

y for all buyers p, sellers q, and contracts

y; combining this with Steps 1–2 above (and dropping the superscripts), we have that

mz ≥ mx ≥ mz; hence, mx = mz and mx̂ = 0. If mx > 0, then {x̂} is a block, where

• on the sell-side (of the definition of a block), Zs = {x̂} and Y s ⊇ {x, z} is such that

ms
Y s > 0 and

• on the buy-side, Z b̂ = {x̂} and Y b̂ is any set of contracts for b̂ such that mb̂
Y b̂
> 0.

If mx = 0, fix some Y b such that mb
Y b > 0; then Z ≡ Cb({x} ∪ Y ∪ {z}) r Y b is a block,

where

• on the buy-side (of the definition of a block), Zb = Z and

• on the sell-side,

– for each y ∈ Z r {x, z}, let Zy = {y} and let Y y be any set such that both y /∈ Y y

and ms(y)
Y y is non-empty, and

– let Z{x,z} = {x, z} and Y {x,z} be any set such that ms
Y {x,z}

is non-empty.3030

Thus, m is not stable, a contradiction.

A.3 Proof of Proposition 22

Consider the continuum model with θ = n. By Theorem 11 the continuum model has a stable

outcome m̄. Consider the set M∗ of all outcome vectors m in the continuum model such
29To see this, take, on the buy-side (in the definition a block), Zb = Z and Y b = Z and, on the sell-side,

for each y ∈ Z, let Zy = {y} and let Y y be any set such that both y /∈ Y y and m
s(y)
Y y is non-empty. (Recall

that every seller will take every contract in Y regardless of the other contracts available.)
30Recall that ms

x = ms
z = 0.
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that the support of m is contained in the support of m̄. Note that, by the definition of

stability, every outcome in M∗ is stable. The set M∗ can be written as the set of all vectors

(mi
Z)i∈I,Z∈℘(Xi) such that

m ≥ 0,∑
{x}⊆Z⊆Xs(x)

m
s(x)
Z =

∑
{x}⊆Z⊆Xb(x)

m
b(x)
Z for all x,

∑
Z∈℘(Xi)

mi
Z = θi for all i, and

mi
Z = 0 if m̄i

Z = 0 for all i and Z.

Because M∗ is a bounded and non-empty polytope, it has an extreme point m∗. Theorem

2.3 of Bertsimas and TsitsiklisBertsimas and Tsitsiklis (19971997) implies that the extreme point m∗ is a basic feasible

solution to these constraints. Theorem 2.2 of Bertsimas and TsitsiklisBertsimas and Tsitsiklis (19971997) implies that

this basic feasible solution can be written as the product of the inverse of a matrix with

integer entries and an integer vector. By Cramer’s rule, all the entries of m∗ are rational

numbers. Consequently, there exists an integer β such that kβ ·m∗ is an integer vector for

all integer k. Moreover, because m∗ is a stable outcome of the continuum model, kβ ·m∗ is a

stable outcome of the finite economy kβ · n. This proves the second part of the proposition.

As for the first part of the proposition, consider an arbitrary replica k · n. Let k′ be the

smallest multiple of β that is no greater than k. The economy k′ · n has a stable outcome, by

part 2 of the proposition. Moreover, k′ · n only excludes (k− k′)|n| ≤ (β − 1)|n| agents. This

establishes part 1 of the proposition taking α = (β − 1)|n|.

A.4 Proof of Theorem 22

The proof is a direct application Theorem 1 of Kaneko and WoodersKaneko and Wooders (19861986). The work of

Kaneko and WoodersKaneko and Wooders shows that the core is non-empty for games with a continuum of players
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and a finite number of types who can form finite coalitions. Unfortunately, we cannot apply

their theorem directly as their framework is different than our matching setting. Therefore,

we proceed as follows: First, starting from our model, we write down a model in the notation

used by Kaneko and WoodersKaneko and Wooders. We then use their Theorem 1 to show the existence of an

“f -core outcome” in their setting. Finally, we use this to construct a core outcome in our

setting. The following proof makes heavy use of the notation and definitions on pages 108–114

of the work of Kaneko and WoodersKaneko and Wooders.

We define the model in the Kaneko and WoodersKaneko and Wooders (19861986) framework as follows: The set

of players (Kaneko and WoodersKaneko and Wooders, 19861986, page 108) is given by

N = ∪i∈I({i} × [0, θi]).

The σ-algebra B is the Borel σ-algebra and µ is the Lebesgue measure. That is, for each

agent type i in our model there is a continuum of players of total mass θi in the associated

Kaneko and WoodersKaneko and Wooders model. Given a player n in N , we denote the first coordinate n(1) of n

as player n’s type.

We now define the characteristic function (Kaneko and WoodersKaneko and Wooders, 19861986, page 110): For

each type i ∈ I, define a utility function ui : ℘(Xi)→ R that represents the preference relation

%i such that ui(∅) = 0. We now define the characteristic function V as the set of payoffs

that can be attained by a coalition by signing contracts with each other. We also include any

payoffs that are Pareto dominated by these, to satisfy Kaneko and WoodersKaneko and Wooders’ Property (5).

Formally, given a finite coalition of players S ⊆ N , the vector v ∈ RS is in V (S) if, for some

sets of roles {Y s}s∈S, we have that:

1. For each s in S, we have that vs ≤ us(1)(Y s).

2. The sets of roles {Y s}s∈S are consistent with players in the coalition signing contracts
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with each other. That is, for each x ∈ X, for each pair of roles x , y ∈ x, we have that

∑
s∈S

1{x∈Y s} =
∑
s∈S

1{y∈Y s}.

This characteristic function satisfies Kaneko and WoodersKaneko and Wooders’ Properties (2)–(5) by definition.

It satisfies Property (6) because the V ({n}) = (−∞, 0] (as un(∅) = 0).

This game satisfies the r-property (Kaneko and WoodersKaneko and Wooders, 19861986, page 114) because the

players of each of the finite number of types i ∈ I are treated identically in the charac-

teristic function. And it satisfies the per-capita bounded property (Kaneko and WoodersKaneko and Wooders,

19861986, page 114) because the characteristic function is bounded. Therefore, Theorem 1 of

(Kaneko and WoodersKaneko and Wooders, 19861986, page 114) implies that the f -core is non-empty; this means that

there is an outcome h inH∗ that cannot be improved by any coalition. The definition ofH∗ im-

plies that there is a sequence (hν)ν∈N in H converging in measure to h (Kaneko and WoodersKaneko and Wooders,

19861986, page 111). Let pν be a partition with hν ∈ H(pν).

We now construct a core allocation m for our model. For each set S in partition pν , let

mS,ν,i
Y be the number of type i players assigned to the set of roles Y . For each n ∈ N , define

mn,ν,i
Y as mS,ν,iY

|S| where S is the set that contains n in pν ; we can now define the mass of type i

players assigned to the set of roles Y under pv as

mν,i
Y =

∫
mn,ν,i

Y dµ(n).

The fact that pν is measure consistent (Kaneko and WoodersKaneko and Wooders, 19861986, page 108) and that

each mS,ν,i
Y satisfies the feasibility equation (33) imply that mν is an outcome. Moreover,

because the set of outcomes is compact there exists a convergent subsequence (by the

Bolzano-Weierstrass Theorem) (mν)ν∈N that converges to an outcome m.

It remains to show that m is in the core in our model. To reach a contradiction, assume

that there is a vector m̃ that blocks m. By Claim 22 below, we can take m̃ to have integer

coordinates. Because m̃ is a block, for each type i and set of contracts Z with m̃i
Z > 0, there
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exists a set of contracts Y with mi
Y > 0 and ui(Z) > ui(Y ). This implies that mν,i

Y > 0 for

sufficiently large ν. Therefore, there is a strictly positive measure of type i players n ∈ N

such that h(n) ≤ ui(Y ). Therefore, there is a coalition S with mi
Z such players for each

i and Z in P(Xi) that can improve upon h (Kaneko and WoodersKaneko and Wooders, 19861986, page 112). This

contradicts h being in the f -core, completing the proof.

Finally, we establish the claim that was used.

Claim 2. If there exists a vector that blocks outcome m, then there exists a vector with

integer entries that blocks m.

Proof. Let m̃ be a vector that blocks m. The set of all vectors that have the support contained

in the support of m̃ and that satisfy the feasibility constraint in equation (33) is a linear

space defined by integer equations. Therefore, by Gaussian elimination, this set has a basis

b1, b2, . . . , bK formed by integer vectors. In particular, we can write m̃ as a linear combination

m̃ = α1 · b1 + · · ·+ αk · bk + · · ·+ αK · bK ,

with real coefficients αk.

If we take βk to be rational numbers that approximate the αk sufficiently well, then the

vector
K∑
k=1

βk · bk

is weakly positive and has the same set of non-zero entries as the vector m̃. Because the

coefficients are rational, we can multiply this vector by a suitable integer to obtain an integer

vector m̄. The vector m̄ is weakly positive, has the same set of non-zero entries as m̃, and

satisfies the feasibility equation (33); thus, m̄ blocks m, completing the proof.
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A.5 Proof of Proposition 33

Consider the continuum model with θ = n. By Theorem 22 the continuum model has a core

outcome m̄. Consider the set M∗ of all outcome vectors m in the continuum model such

that the support of m is contained in the support of m̄. Note that, by the definition of the

core, every outcome in M∗ is in the core. The set M∗ can be written as the set of all vectors

(mi
x )i∈I,x∈Xi such that

m ≥ 0,

ma(x )
x = ma(y)

y for all x ∈ X, and all x , y ∈ x,∑
x∈Xi

mi
x = θi for all i, and

mi
x = 0 if m̄i

x = 0 for all i and x .

Because M∗ is a bounded and non-empty polytope, it has an extreme point m∗. Theorem

2.3 of Bertsimas and TsitsiklisBertsimas and Tsitsiklis (19971997) implies that the extreme point m∗ is a basic feasible

solution to these constraints. Theorem 2.2 of Bertsimas and TsitsiklisBertsimas and Tsitsiklis (19971997) implies that

this basic feasible solution can be written as the product of the inverse of a matrix with

integer entries and an integer vector. By Cramer’s rule, all the entries of m∗ are rational

numbers. Consequently, there exists an integer β such that kβ ·m∗ is an integer vector for

all integer k. Moreover, because m∗ is a core outcome of the continuum model, kβ ·m∗ is a

core outcome of the finite economy kβ · n. This proves the second part of the proposition.

The first part of the proposition then follows from essentially the same argument as

Proposition 22.

A.6 Proof of Claim 11

Let

Ã = {A ∈A : Z(A) = q, and ui(Φ,Ψ) = −∞ =⇒ Ai(Φ,Ψ) = 0}.
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If W(q) = −∞, the claim is trivial. Consider the case where W(q) > −∞. The definition

of W(q) implies that it is sufficient to take the supremum in Ã. This set is compact in the

product topology (pointwise convergence), by Tychonoff’s Theorem. Consider a sequence of

allocations Ak converging pointwise to an allocation A∞. We can show that

lim
k→∞

∫
ui · Aik dη =

∫
ui · Ai∞ dη.

We have that |ui · Ai| is bounded by maxΦ,Ψ u
i(Φ,Ψ). Moreover, regularity implies that

∫
max
Φ,Ψ

ui(Φ,Ψ) dη

is finite. Convergence of the desired integrals then follows from the dominated convergence

theorem.

The convergence above implies that

∫
ui · Ai dη

varies continuously with A in the compact set Ã. Therefore, the supremum in the definition

of W(q) attains its maximum.

A.7 Proof of Proposition 44

Consider a competitive equilibrium [A; p] and any feasible allocation Ã. Individual optimiza-

tion (Condition 11 of Definition 66) implies that, for all i ∈ I,

(ui − ep) · Ai ≥ (ui − ep) · Ãi.
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Integrating this, we have that

∫
(ui − ep) · Ai dη ≥

∫
(ui − ep) · Ãi dη.

We have that Z(A) = Z(Ã) = 0 because both allocations are feasible. Hence,
∫
ep · Ai dη =∫

ep · Ãi dη = 0. Therefore, the above inequality is equivalent to (55), completing the proof.

A.8 Proof of Proposition 55

We first prove the following Lemma.

Lemma 2. Every equilibrium price vector is a supergradient of W at 0.

Proof. Consider an equilibrium [A; p], and a vector q ∈ RΩ. Let Ã be an allocation with

Z(Ã) = q. Individual optimization (Condition 11 of Definition 66) implies that, for each i ∈ I,

(ui − ep) · Ai ≥ (ui − ep) · Ãi.

Integrating this we have

∫
(ui − ep) · Ai dη ≥

∫
(ui − ep) · Ãi dη.

Therefore,

∫
ui · Ãi dη ≤

∫
ui · Ai dη +

∫
ep · (Ãi − Ai) dη∫

ui · Ãi dη ≤W(0) + p · q.

The inequality holds for any such Ã. This implies that W(q) ≤W(0) + p · q, completing the

proof.

We now prove Proposition 55. Consider an equilibrium [A; p]. Fix a trade ω and ε > 0.
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Define the marginal non-buyers of trade ω as the agent types i who do not buy trade ω at p,

but who would gain utility of at least pω − ε by adding trade ω to their bundle. Formally,

M(ε) ≡ {i ∈ I :Ai(Φ,Ψ) > 0 =⇒ ω /∈ Φ, ω /∈ Ψ, and

ui(Φ ∪ {ω},Ψ)− ui(Φ,Ψ) > pω − ε}.

By the full support assumption, M(ε) has positive measure. Consider a vector q ∈ RΩ

such that qω = δ > 0 and qψ = 0 for all ψ ∈ Ω r {ω}. For δ small enough, there exists an

allocation Ã with Z(Ã) = q such that Ãi = Ai for all i ∈ I rM(ε) and that assigns the extra

mass δ of trade ω to marginal non-buyers in the set M(ε). Therefore, by the definition of

M(ε), we have that

W(q)−W(0) ≥ δ · (pω − ε).

By Lemma 22 the price vector p is a supergradient, which implies that

pω − ε ≤
W(q)−W(0)

δ
≤ pω.

Moreover, the inequalities hold for all q with sufficiently small norm because can make an

analogous argument for qω = δ < 0. Therefore, W has a directional derivative at 0, and

∂ωW(0) = pω. The fact that this directional derivative is well-defined implies that equilibrium

prices are unique and equal to the marginal social value of each trade ω.

A.9 Proof of Proposition 66

The ∞-replica ηn is regular, and therefore has an equilibrium [Ā; p∗].

Consider the set A∗ of all feasible allocations A such that, for all i with ni = 0, Ai = Āi,

and for all i with ni > 0 the support of Ai is contained in the support of Āi. Note that [A; p∗]

is a competitive equilibrium of the ∞-replica for any A in the set A∗.

Moreover, the bundles of contracts that agents with ni > 0 receive in the allocations in
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A∗,

∪A∈A∗(Ai)i:ni>0,

is the set of vectors (Ai)i:ni>0 that solve

Ai(Φ,Ψ) ≥ 0 for all i, Φ, and Ψ,∑
i,Φ,Ψ:ω∈Φ

Ai(Φ,Ψ) · ni =
∑

i,Φ,Ψ:ω∈Ψ
Ai(Φ,Ψ) · ni for all x,

∑
Φ,Ψ

Ai(Φ,Ψ) = 1 for all i, and

Ai(Φ,Ψ) = 0 if Āi(Φ,Ψ) = 0.

Because A∗ is a bounded and non-empty polytope, it has an extreme point (A∗i )i:ni>0.

Theorem 2.3 of Bertsimas and TsitsiklisBertsimas and Tsitsiklis (19971997) implies that the extreme point is a basic

feasible solution to these constraints. Theorem 2.2 of Bertsimas and TsitsiklisBertsimas and Tsitsiklis (19971997) implies

that this basic feasible solution can be written as the product of the inverse of a matrix

with integer entries and an integer vector. By Cramer’s rule, all the entries of (A∗i )i:ni>0 are

rational numbers. Thus, there exists an allocation A∗ such that [A∗; p] is an equilibrium of

the ∞-replica, and all the coordinates of A∗ with ni > 0 are rational numbers.

Consequently, there exists an integer β such that all the coordinates of A∗ are integer

multiples of 1/β. Therefore, [A∗; p] is a competitive equilibrium of any k-replica where k is a

multiple of β.

The first part of the proposition then follows from essentially the same argument as

Proposition 22.
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