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Main Appendix
The appendix contains omitted proofs, as well as additional results which are used

to derive the results in the text. Appendix A extends some results of classic matching

theory to the continuum model. It proves existence of stable matchings, the lattice

theorem, and the rural hospitals theorem. It also contains a proof of the supply and de-

mand lemma. Appendix B derives the uniqueness and convergence of discrete economy

results from Section 3. Appendix C collects additional omitted proofs.

Appendix A. Preliminary Results

We begin the analysis by deriving some basic properties of the set of stable matchings

in the continuum model. Besides being of independent interest, they will be useful in

the derivation of the main results. Throughout this section, unless otherwise stated,

we fix a continuum economy E = [η, S], and omit dependence on E, η, and S in the

notation.

A.1. Monotonicity and Gross Substitutes Properties of Demand. We note that

demand functions satisfy some basic price-theoretic properties.

Definition A1. Aggregate demand for a set of colleges C ′ ⊆ C is defined as∑
c∈C′

Dc(P ).

Aggregate demand for C ′ is monotone if this expression is monotone nonincreasing in

Pc′ for all c′ ∈ C ′. Aggregate demand for C ′ satisfies the gross substitutes property

if it is monotone nondecreasing in Pc′′ for any c′′ ∈ C\C ′. The following remark follows

from the definition of demand.

Remark A1. Aggregate demand for any subset of colleges (and in particular for a

single college) is monotone, satisfies the gross substitutes property, and is continuous

in cutoffs.

A.2. Existence of Stable Matchings, Tâtonnement, and the Lattice Theo-

rem. We now establish the existence and lattice structure of stable matchings by using

a tâtonnement procedure. The tâtonnement includes as particular cases procedures

closely related to the Gale and Shapley student- and college- proposing algorithms.

The map also includes as a particular case the map of Abdulkadiroğlu et al. (Forth-

coming) in their setting, where η is uniform over scores and there is a measure 1 of

students.

Given P−c define the interval

Ic(P−c) = {p ∈ [0, 1] : Dc(p, P−c) ≤ Sc and Dc(p, P−c) = Sc if p > 0}.
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That is, Ic(P−c) is the set of cutoffs for college c that clear the market for c given the

cutoffs of other colleges. Define the map T (P ) as

Tc(P ) = arg min
p∈Ic(P−c)

|p− Pc|.

That is, the map T has college c update its cutoff to the closest cutoff in Ic(P−c) to

Pc. This means that college c adjusts its cutoff as little as possible to clear the market

for c, taking the cutoffs of other colleges as given. This map satisfies the following

properties.

Proposition A1. The map T is monotone non-decreasing (in the standard partial

order of [0, 1]C), and the set of fixed points of T coincides with the set of market clearing

cutoffs.

Proof. We first show that T is well defined. Note that, because Dc(1, P−c) = 0 and D is

continuous, then either there exists p ∈ [0, 1] such that Dc(p, P−c) = Sc or 0 ∈ Ic(P−c).
In either case, we have that Ic(P−c) is nonempty. Note that, by monotonicity and

continuity of demand, Ic(P−c) is a compact interval.

We now show that T is monotone. To see this, consider P ≤ P ′, tc = Tc(P ), and

t′c = Tc(P
′). To reach a contradiction, assume that t′c < tc. In particular tc > 0. Using

the monotonicity and gross substitutes properties we have that

Sc = Dc(tc, P−c) ≤ Dc(t
′
c, P−c) ≤ Dc(t

′
c, P

′
−c) ≤ Sc.

Likewise,

Sc = Dc(tc, P−c) ≤ Dc(tc, P
′
−c) ≤ Dc(t

′
c, P

′
−c) ≤ Sc.

From these inequalities we have that Dc(tc, P
′
−c) = Dc(t

′
c, P−c) = Sc. Hence,

[t′c, tc] ⊆ Ic(P−c) ∩ Ic(P ′−c).

The fact that the closest point to Pc in Ic(P−c) is tc implies that Pc ≥ tc. Therefore, P ′c ≥
tc. Therefore, |tc − P ′c| < |t′c − P ′c|, which contradicts t′c = Tc(P

′). This contradiction

establishes that T is monotone.

Finally, we now show that the set of fixed points of T coincide with the market

clearing cutoffs. This follows as P ∗ is a fixed point of T if and only if P ∗c ∈ Ic(P ∗−c) for

all c, which is true if and only if P ∗ is a market clearing cutoff. �

From Proposition A1 and Tarski’s Theorem we have that stable matchings exist, as

they correspond to fixed points of T .

Corollary A1. At least one stable matching exists.

Moreover, Tarski’s Theorem and Proposition A1 also imply that the set of market

clearing cutoffs is a lattice. Consider the sup (∨) and inf (∧) operators in [0, 1]C as
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lattice operators on cutoffs. That is, given an arbitrary set of cutoffs X ⊆ 2([0,1]C),

define

(∨X)c = sup
P∈X

Pc,

and analogously for the inf operator.

Theorem A1. (Lattice Theorem) The set of market clearing cutoffs is a complete

lattice.

This theorem imposes a strict structure in the set of stable matchings. It differs

from the classic Conway lattice theorem in the discrete setting (Knuth 1976), as the

set of stable matchings forms a lattice with respect to the operation of taking the sup

of the associated cutoff vectors. In the discrete model, where the sup of two matchings

is defined as the matching where each student gets her favorite college in each of the

matchings.

Finally, although this will not be used in the analysis that follows, we note that

T produces algorithms closely related to deferred acceptance. Let 0 (1) denote a C-

dimensional vector of zeros (ones). Note that iterating the map T starting from cutoffs

of 0 is similar (but not equal) to the student-proposing deferred acceptance algorithm.

Namely, consider the sequence (P k)k∈N of cutoffs with P k = T k(0). In the initial step

P 0 = 0, the demand function Dθ(0) has each student point to her favorite college. In

the second step, colleges raise their cutoffs to P 1 = T (0). That is, all colleges reject just

enough students to stay within capacity. The allocation given by Dθ(P 1) then allows

rejected students to apply to more colleges, as long as eθ is high enough.1 This will make

demand for each college weakly higher than supply, and the algorithm continues with

more students being rejected and scores going up. An analogous argument shows that

iterating T starting from 1 is closely related to the college-proposing deferred acceptance

algorithm. The following Proposition shows that, much like deferred acceptance, these

algorithms converge to the student-optimal and college-optimal stable matchings.

Proposition A2. (Student- and college- optimal cutoff adjustment algorithms) The

limits

P− = lim
k→∞

T k(0)

P+ = lim
k→∞

T k(1).

exist, and equal the smallest and largest market clearing cutoffs.

1Note that this is slightly different from the Gale and Shapley mechanism, where students can always
apply to the next college in their preference list, as long as they have not been rejected, regardless of
preferences. In contrast, in the present algorithm students are not allowed to apply to colleges where
their scores are below current cutoffs. As such, the order of applications differs in the two procedures.
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Proof. Consider first P−. We have that 0 ≤ T (0). Iterating this inequality, we have

that T k(0) ≤ T k+1(0), so that the sequence T k(0) is monotone. Therefore, the limit P−

exists. The fact that P− is a market clearing cutoff follows from continuity of demand.

Namely, for every k, and P k = T k(0),

D(P k+1
c , P k

c ) ≤ Sc,

with equality if P k
c > 0. Taking the limit we have that

Dc(P
−) ≤ Sc

with equality if P−c > 0. Finally, if P ∗ is a market clearing cutoff, then 0 ≤ P ∗.

Therefore,

T k(0) ≤ T k(P ∗) = P ∗.

Taking the limit as k →∞, we get P− ≤ P ∗. The proof for P+ is analogous. �

A.3. Rural Hospitals Theorem. We now show that the rural hospitals theorem of

classic matching theory extends to the continuum setting. This result implies that a

college that does not fill its quota in one stable matching does not fill its quota in any

other stable matching. Moreover, the measure of unmatched students is the same in

every stable matching.

Theorem A2. (Rural Hospitals Theorem) The measure of students matched to

each college is the same in any stable matching. Furthermore, if a college does not fill

its capacity, it is matched to the same set of students in every stable matching, except

for a set of students with η measure 0.

Proof. Part 1: the measure of students matched to each college is the same

in any stable matching. Consider two market clearing cutoffs P and P ′, and let

P+ = P ∨ P ′. Take a college c, and assume without loss of generality that Pc ≤ P ′c.

By the gross substitutes property, we must have that Dc(P
+) ≥ Dc(P

′), as P+
c = P ′c

and the cutoffs of other colleges are higher under P+. In addition, if P ′c > 0, then

Dc(P
+) = Sc ≥ Dc(P ). Moreover, if P ′c = 0, then Pc = P ′c, and Dc(P

+) ≥ Dc(P ).

Either way, we have that

Dc(P
+) ≥ max{Dc(P ), Dc(P

′)}.

Moreover, the demand for staying unmatched 1−∑c∈C Dc(·) must at least as large

under P+ than under P or P ′. Because demand for staying unmatched plus for all

colleges always sums to 1, we have that, for all colleges, Dc(P
+) = Dc(P ) = Dc(P

′).

Part 2: a college that does not fill its capacity is matched to the same set

of students in any stable matching.

Consider two stable matchings µ and µ′. Let P = Pµ, P ′ = Pµ′. Let P+ = P ∨ P ′
and µ+ = M(P+). Consider now a college c such that η(µ(c)) < Sc. Therefore
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0 = Pc = P ′c = max{Pc, P ′c} = P+
c = 0. By the definition of demand we have that

µ(c) ⊆ µ+(c) and µ′(c) ⊆ µ+(c). By the first part of the theorem we know that

the measure of µ(c), µ′(c), and µ+(c) are the same. Therefore, η(µ+(c)\µ(c)) = 0.

Consequently, η(µ(c)\µ′(c)) ≤ η(µ+(c)\µ′(c)) = 0. Using a symmetric argument we get

that η(µ′(c)\µ(c)) = 0, completing the proof. �

Appendix B. Main Results

B.1. Uniqueness. We can now prove Theorem 1. The proof of Theorem 1 part 1 uses

similar ideas as the proof of Lemma 4 in Abdulkadiroğlu et al. (Forthcoming). The

first step in the proof is to note that the set of market clearing cutoffs is a lattice.

Abdulkadiroğlu et al. (Forthcoming) prove this with a particular case of the map used

in our proof of the lattice theorem. The second step is to show that demand for a

certain subset of colleges is the same under the largest and smallest market clearing

cutoffs. This is true by definition in Abdulkadiroğlu et al.’s model, while in our model

it depends on the rural hospitals theorem. The third part shows that, with full support,

this implies that the smallest and largest market clearing cutoffs are equal. This third

step is essentially the same as in Abdulkadiroğlu et al.’s proof.

Denote the excess demand given a vector of cutoffs P and an economy E = [η, S] by

z(P |E) = D(P |η)− S.

Proof. (Theorem 1)

Part (1):

By the lattice theorem, E has smallest and greatest market clearing cutoffs P− ≤ P+,

and corresponding stable matchings µ−, µ+. Let C+ = {c ∈ C : P+
c 6= P−c }. In

particular, for all colleges in C+ we have P+
c > 0. Let C0 = C\C+. Note that, since for

all colleges c ∈ C0 we have P+
c = P−c , and for all colleges c in C+ we have P+

c > P−c ,

we have that

{θ ∈ Θ : µ+(θ) ∈ C+} ⊆ {θ ∈ Θ : µ−(θ) ∈ C+}.
By the rural hospitals theorem, the difference between these two sets has measure 0.

That is

η({θ ∈ Θ : µ−(θ) ∈ C+}\{θ ∈ Θ : µ+(θ) ∈ C+}) = 0.

Let �+ be a fixed preference relation that ranks all colleges in C+ higher than those

in C0. Then the set in the above equation must contain all students with preference

�+ and scores P−c ≤ eθc < P+
c for all c ∈ C+. That is,

{(�+, eθ) ∈ Θ : P−c ≤ eθc < P+
c for all c ∈ C+}

⊆ {θ ∈ Θ : µ−(θ) ∈ C+}\{θ ∈ Θ : µ+(θ) ∈ C+}.
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Therefore, the former set has measure 0:

η({(�+, eθ) ∈ Θ : P−c ≤ eθc < P+
c for all c ∈ C+}) = 0.

By the full support assumption, and since P−c < P+
c for all c in C+, this can only be

the case if C+ is the empty set.2 This implies that P− = P+, and therefore there exists

a unique vector of market clearing cutoffs.

Part (2):

The proof follows from two claims. The first claims shows that, in an economy with

more than one stable matching, either demand is not differentiable, or the derivative

matrix of demand is not invertible. The proof of the claim follows from the observation

that demand is constant for cutoffs between the smallest and largest market clearing

cutoffs. This observation is a consequence of monotonicity of demand and of the rural

hospitals theorem.

Claim B1. Consider S such that E = [η, S] has more than one stable matching. Then

there exists at least one market clearing cutoff P ∗ of E where either demand is not

differentiable, or the derivative matrix ∂D(P ∗|E) of the demand function is singular.

Proof of Claim B1. If there is at least one market clearing cutoff of E where demand is

not differentiable, we are done. Consider now the case where demand is differentiable

at all market clearing cutoffs.

By the lattice theorem, economy E has smallest and largest market clearing cutoffs,

with P− ≤ P+. Let

C+ = {c : P−c < P+
c }.

C+ is nonempty, due to the assumption that E has more than one market clearing

cutoff. Let F be the subspace of RC where all coordinates corresponding to colleges

not in C+ are zero, that is

F = {v ∈ RC : vc = 0 for all c /∈ C+}.

Consider P ∈ [P−, P+]. For any college c /∈ C+ we have P+
c = P−c = Pc, and

therefore, by the gross substitutes property,

Dc(P
+|η) ≥ Dc(P |η) ≥ Dc(P

−|η).

By the rural hospitals theorem, Dc(P
−|η) = Dc(P

+|η), and therefore Dc(·|η) is constant

in the cube [P−, P+]. In particular, for any c /∈ C+ and c′ ∈ C+ we have that

(1) ∂c′Dc(P
−|η) = 0.

2Note that this argument works more generally than with the full support assumption. For example,
if college preferences were perfectly correlated and the support of student types was equal to {θ : eθc =
eθc′ for all c, c′ ∈ C}, then the fact that the set above has measure 0 would also imply that there exists
a single vector of market clearing cutoffs.



SUPPLY AND DEMAND IN MATCHING MARKETS 7

That is, the derivative matrix ∂D takes the subspace F into itself.

In addition, for all P ∈ [P−, P+], it follows from the monotonicity property of aggre-

gate demand that ∑
c∈C+

Dc(P
−|η) ≥

∑
c∈C+

Dc(P |η) ≥
∑
c∈C+

Dc(P
+|η).

By the rural hospitals theorem, we have that Dc(P
−|η) = Dc(P

+|η) for all c ∈ C+, and

therefore
∑

c∈C+ Dc(P |η) is constant on the cube [P−, P+]. This implies that∑
c∈C+

∂c′Dc(P
−|η) = 0

for all c, c′ ∈ C+. Consequently, the linear transformation ∂D(P−|η) restricted to

the subspace F is not invertible. Because ∂D(P−|η) takes F into itself, we have that

∂D(P−|η) is not invertible, proving the claim.

�

We now note that, as a consequence of Sard’s Theorem,3 for almost all vectors S,

the demand function is continuously differentiable with a nonsingular derivative at all

market clearing cutoffs. The intuition for this claim is similar to the observation that,

in a standard supply and demand model with a single good, demand and supply almost

never cross at a point where demand is vertical.

Claim B2. For almost every S ∈ RC
+ with

∑
c Sc < 1, at every market clearing cutoff

P ∗ of [η, S], demand is continuously differentiable and the derivative matrix ∂D(P ∗|η)

is invertible.

Proof of Claim B2. The assumption that
∑

c Sc < 1 implies that all market clearing

cutoffs P ∗ of [η, S] satisfy D(P ∗|η) = S. Moreover, all market clearing cutoffs are

strictly greater than 0. The assumption that supply of all colleges is strictly positive

implies that market clearing cutoffs are strictly lower than 1. Therefore, any vector of

market clearing cutoffs is in the open set (0, 1)C .

Define the closure of the set of points where the demand function is not differentiable

as

NDP = closure({P ∈ (0, 1)C : D(·|η) is not continuosuly differentiable at P}).

Note that, by the definition of a regular distribution of types η, the image of NDP under

D(·|η) has measure 0. In particular, for almost every S, demand at every associated

market clearing cutoff is continuously differentiable.

3Sard’s theorem can be stated as follows. Let f : X → RC be a continuously differentiable function
from an open set X ⊆ RC into RC . A critical point of f is x ∈ X such that ∂f(x) is a singular matrix.
A critical value is any y ∈ RC that is the image of a critical point. Sard’s theorem states that the set
of critical values of f has Lebesgue measure 0. See Guillemin and Pollack (1974); Milnor (1997).
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Moreover, restricted to the open set (0, 1)C\NDP , the demand function is contin-

uously differentiable. Consequently, by Sard’s theorem, the set of critical values of

D(·|η) restricted to (0, 1)C\NDP has measure 0. That is, for almost all S, there are

no vectors P in (0, 1)C\NDP such that D(P |η) = S and ∂D(P |η) is singular. Taken

together, these two observations imply that, for almost all S, demand at associated mar-

ket clearing cutoffs is both continuously differentiable and has an invertible derivative

matrix.

�

The result now follows from Claims B2 and B1. Take S such that
∑

c Sc < 1 and

economy E = [η, S] has more than one stable matching. By Claim B1, in at least one of

the market clearing cutoffs of E, demand is either non-differentiable, or has a singular

derivative. However, Claim B2 shows that this only holds for a measure 0 set of vectors

S. Therefore, the set of vectors S such that
∑

c Sc < 1 and there is more than one

stable matching has measure 0, completing the proof. �

B.2. Continuity and convergence.

B.2.1. Continuity Within E. This section establishes that the stable matching corre-

spondence is continuous around an economy E ∈ E with a unique stable matching. That

is, that if a continuum economy has a unique stable matching, it varies continuously

with the fundamentals.

Note that, by our definition of convergence, we have that if the sequence of con-

tinuum economies {Ek}k∈N converges to a continuum economy E, then the functions

z(·|Ek) converge pointwise to z(·|E). Moreover, using the assumption that firms’ indif-

ference curves have measure 0 at E, we have that, if we simultaneously take convergent

sequences of cutoffs and economies, then the associated excess demand converges to

excess demand in the limit. This is formalized in the following lemma.

Lemma B1. Consider a continuum economy E = [η, S], a vector of cutoffs P and a

sequence of cutoffs {P k}k∈N converging to P . If {ηk}k∈N converges to η in the weak-*

sense and {Sk}k∈N converges to S then

z(P k|[ηk, Sk]) = D(P k|ηk)− Sk

converges to z(P |E).

Proof. Let Gk be the set

Gk = ∪c{θ ∈ Θ : ‖eθc − Pc‖ ≤ sup
k′≥k
‖P k′

c − Pc‖}.

The set

∩kGk = ∪c{θ ∈ Θ : eθc = Pc},
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has η-measure 0 by the strict preferences assumption 1. Since the Gk are nested, we

have that η(Gk) converges to 0 as k →∞.

Now take ε > 0. There exists k0 such that for all k ≥ k0 we have η(Gk) < ε/4. Since

the measures ηk converge to η in the weak sense, we may assume also that ηk(Gk0) < ε/2.

Since the Gk are nested, this implies ηk(Gk) < ε/2 for all k ≥ k0. Note that Dθ(P ) and

Dθ(P k) may only differ for θ ∈ Gk. We have that

‖D(P |η)−D(P k|ηk)‖ ≤ ‖D(P |η)−D(P |ηk)‖+ ‖D(P |ηk)−D(P k|ηk)‖.

As ηk converges to η, we may take k0 large enough so that the first term is less than

ε/2. Moreover, since the measure η(Gk) < ε/2, we have that for all k > k0 the second

term is less than ε/2. Therefore, the above difference is less than ε, completing the

proof. �

Note that this lemma immediately implies the following:

Lemma B2. Consider a continuum economy E = [η, S], a vector of cutoffs P a se-

quence of cutoffs {P k}k∈N converging to P , and a sequence of continuum economies

{Ek}k∈N converging to E. We have that z(P k|Ek) converges to z(P |E).

Using the lemma, we show that the stable matching correspondence is upper hemi-

continuous.

Proposition B1. (Upper Hemicontinuity) The stable matching correspondence is

upper hemicontinuous

Proof. Consider a sequence {Ek, P k}k∈N of continuum economies and associated market

clearing cutoffs, with Ek → E and P k → P , for some continuum economy E and vector

of cutoffs P . We have z(P |E) = limk→∞ z(P k, Ek) ≤ 0. If Pc > 0, for large enough

k we must have P k
c > 0 so that zc(P |E) = limk→∞ zc(P

k, Ek) = 0. Therefore, P is a

market clearing cutoff of E. �

With uniqueness, continuity also follows easily.

Lemma B3. (Continuity) Let E be a continuum economy with a unique stable match-

ing. Then the stable matching correspondence is continuous at E.

Proof. Let P be the unique market clearing cutoff ofE. Consider a sequence {Ek, P k}k∈N
of economies and associated market clearing cutoffs, with Ek → E. Assume, by contra-

diction that P k does not converge to P . Then P k has a convergent subsequence that

converges to another point P ′ ∈ [0, 1]C , with P ′ 6= P . By the previous proposition,

P ′ must be a market clearing cutoff of E, contradicting the fact that P is the unique

market clearing cutoff of E. �
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B.2.2. Convergence of Finite Economics. We now consider the relationships between

the stable matchings of a continuum economy, and stable matchings of a sequence of

discrete economies that converge to it. The argument follows similar lines as that for

convergence of a sequence of continuum economies in the preceding Subsection.

For finite economies F , we define the excess demand function as in the continuous

case:

z(P |F ) = D(P |F )− S.

Note that, with this definition, P is a market clearing cutoff for finite economy F iff

z(P |F ) ≤ 0, with zc(P |F ) = 0 for all colleges c such that Pc > 0.

From Lemma B1 we immediately obtain the following result.

Lemma B4. Consider a limit economy E, a sequence of cutoffs {P k}k∈N converging

to P , and a sequence of finite economies {F k}k∈N converging to E. We then have that

z(P k|F k) converges to z(P |E).

This lemma then implies the following upper hemicontinuity property.

Proposition B2. (Convergence) Let E be a continuum economy, and {F k, P k}k∈N
a sequence of discrete economies and associated market clearing cutoffs, with F k → E

and P k → P . Then P is a market clearing cutoff of E.

Proof. (Proposition B2) We have z(P |E) = limk→∞ z(P k|F k) ≤ 0. If Pc > 0, then

P k
c > 0 for large enough k, and we have zc(P |E) = limk→∞ zc(P

k|F k) = 0. �

When the continuum economy has a unique stable matching, we can prove the

stronger result below.

Lemma B5. (Convergence with uniqueness) Let E be a continuum economy with

a unique market clearing cutoff P , and {F k, P k}k∈N a sequence of discrete economies

and associated market clearing cutoffs, with F k → E. Then P k → P .

Proof. (Lemma B5) To reach a contradiction, assume that P k does not converge to

P . Then P k has a convergent subsequence that converges to another point P ′ ∈ [0, 1]C ,

with P ′ 6= P . By Proposition B2, P ′ is a market clearing cutoff of E. Therefore, we

have that P ′ 6= P is a market clearing cutoff, a contradiction with P being the unique

market clearing cutoff of E. �

B.2.3. Proof of Theorem 2. Theorem 2 follows from the previous results.

Proof. (Theorem 2) Part (3) follows from Lemma B3 and Part (1) follows from Lemma

B2. As for Part (2), note first that given an economy F k the set of market clearing

cutoffs is compact, which follows from the definition of market clearing cutoffs, and

continuity of the demand function. Therefore, there exist market clearing cutoffs P k
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and P ′k of F k such that the diameter of F k is ‖P k − P ′k‖. However, by Part (1), both

sequences {P k}k∈N and {P ′k}k∈N are converging to P , and therefore the diameter of F k

is converging to 0. �

Appendix C. Additional Proofs

This section collects proofs that were omitted in the text.

C.1. The Supply and Demand Lemma. We first prove the continuous version of

the supply and demand lemma.

Proof. (Lemma 1) Let µ be a stable matching, and P = Pµ. Consider a student θ

with µ(θ) = c. By definition of the operator P , Pc ≤ eθc . Consider a college c′ that θ

prefers over c. By the open on the right condition, there is a student θ+ = (�θ, eθ+)

with slightly higher scores than θ who is matched to c and prefers c′. By stability of µ,

all the students that are matched to c′ have higher c′ scores than θ+, so Pc′ ≥ e
θ+
c′ > eθc′ .

Following the argument for all colleges that θ prefers to c, we see that there are no

colleges that are better than c and that θ can afford at cutoffs P . Therefore, c is better

than any other college that θ can afford, so Dθ(P ) = µ(θ). This implies that no college

is over-demanded given P , and thatMPµ = µ. To conclude that P is a market clearing

cutoff, note that if η(µ(c)) < Sc stability implies that a student whose first choice is c

and has score at c of zero is matched to c. Therefore, Pc = 0.

To prove the other direction of the lemma, let P be a market clearing cutoff, and

µ =MP . By the definition of Dθ(P ), µ is open on the right and measurable. Because P

is a market clearing cutoff, µ respects capacity constraints. It respects the consistency

conditions to be a matching by definition. To show that µ is stable, consider any

potential blocking pair (θ, c) with µ(θ) ≺θ c. Since θ does not demand c (i.e., µ(θ) =

Dθ(P ) 6= c), it must be that Pc > eθc , so Pc > 0 and c has no empty seats. For any type

θ′ such that θ′ ∈ µ(c), we have that eθ
′
c ≥ Pc > eθc , and therefore (θ, c) is not a blocking

pair. Thus, µ is stable.

We now show that PM is the identity. Let P ′ = Pµ. If µ(θ) = c, then eθc ≥ Pc.

Therefore,

P ′c = (Pµ)c = inf
θ∈µ(c)

eθc ≥ Pc.

However, if θ is a student with eθc = Pc whose favorite college is c, then µ(θ) = Dθ(P ) =

c. Therefore P ′c ≤ Pc. These two inequalities imply that P ′ = P , and therefore

PMP = P . �

We now prove the discrete version of the supply and demand Lemma.

Proof. (Lemma 2) Consider a stable matching µ̃, and let P = P̃µ̃. Any student θ who

is matched to a college c = µ̃(θ) can afford her match, as Pc ≤ eθc by the definition of
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P̃ . Likewise, students who are unmatched may always afford being unmatched. Note

that no student can afford a college c′ �θ µ̃(θ): if she could, then Pc′ ≤ eθc′ , and by

the definition of P̃ , there would be another student θ′ matched to c′ with eθ
′

c′ < eθc′ , or

empty seats at c′, which would contradict µ̃ being stable. Consequently, no student can

afford any option better than µ̃(θ), and all students can afford their own match µ̃(θ).

This implies Dθ(P ) = µ̃(θ). This proves both that M̃P̃ is the identity, and that P is

a market clearing cutoff.

In the other direction, let P be a market clearing cutoff, and µ̃ = M̃P . By the

definition of the operator M̃ and the market clearing conditions, µ̃ is a matching, so

we only have to show there are no blocking pairs. Assume by contradiction that (θ, c)

is a blocking pair. If c has empty slots, then Pc = 0 ≤ eθc . If c is matched to a student

θ′ that is less preferred than θ, then Pc ≤ eθ
′
c ≤ eθc . Hence, we must have Pc ≤ eθc .

However, this implies that c �θ Dθ(P ) = µ̃(θ), so (θ, c) cannot be a blocking pair,

reaching a contradiction. �

C.2. School Competition. We now prove the proposition for the school competition

application in Section 4.1.

Proof. (Proposition 2)

Aggregate quality is defined as

Qc(δ) =

ˆ
µδ(c)

eθc dηδ(θ)

=

ˆ
{θ:Dθ(P ∗(δ))=c}

eθc · fδ(θ) dθ.

By Leibniz’s rule, Qc is differentiable in δc, and the derivative is given by

dQc(δ)

dδc
=
´
{θ:Dθ(P ∗(δ))=c} e

θ
c · d

dδc
fδ(θ) dθ(2)

+
∑

c′ 6=c
dP ∗
c′

dδc
·Mc′c · P̄c′c

− dP ∗c
dδc
· [Mc∅ +

∑
c′ 6=cMcc′ ] · P ∗c .

The first term is the integral of the derivative of the integrand, and the last two terms

the change in the integral due to the integration region {θ : Dθ(P ∗(δ)) = c} changing

with δc. The terms in the second line are the changes due to changes in the cutoffs

P ∗c′ , the students that school c gains (or loses) because school c′ becomes more (less)

selective. The quantity of these students is
dP ∗
c′

dδc
·Mc′c, and their average quality P̄c′c.

The last line is the term representing the students lost due to school c raising its cutoff

Pc. These students number [Mc∅+
∑

c′ 6=cMc′c], and have average quality P ∗c . Note that,

since the total number of students admitted at school c is constant and equal to Sc, we
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have

0 =
´
{θ:Dθ(P ∗(δ))=c}

d
dδc
fδ(θ) dθ

+
∑

c′ 6=c
dP ∗
c′

dδc
·Mc′c

− dP ∗c
dδc
· [Mc∅ +

∑
c′ 6=cMcc′ ].

Therefore, if we substitute dP ∗c
dδc
· [Mc∅ +

∑
c′ 6=cMcc′ ] in equation (2) we have

dQc(δ)

dδc
=
´
{θ:Dθ(P ∗(δ))=c}[e

θ
c − P ∗c ] · d

dδc
fδ(θ) dθ

+
∑

c′ 6=c
dP ∗
c′

dδc
·Mc′c · [P̄c′c − P ∗c ].

The term in the second line is the market power effect as defined in the text. That the

term in the first line equals the expression in Proposition 2 follows from the definition

of Nc and ēc.

To see that the direct effect is positive, note that by definition ēc ≥ P ∗(δ), and since

uic(δ) is increasing in δc we have Nc ≥ 0. �

We now provide the derivation of the market power effect in Section 4.1 when schools

are symmetrically differentiated.

Additional details on Section 4.1.

In Section 4.1 we gave a formula for the market power effect when the function fδ(θ)

is symmetric over all schools, and schools choose the same level of quality. This formula

follows from substituting an expression for dP ∗/dδc in the formula for the market power

term. To obtain the formula for dP ∗/dδc, we start from the point δ where all δc = δc′ .

In this case, all P ∗c (δ) = P ∗c′(δ). If school c changes δc, the the cutoff P ∗c (δ) of school c

will change. The cutoffs of the other schools will change, but all other schools c′ 6= c

will have the same cutoff P ∗c′(δ). We denote Dc(Pc, Pc′ |δ) for the demand for school c,

and Dc′(Pc, Pc′|δ) for the demand for each other school under these cutoffs. Applying

the implicit function theorem to the system of two equations

Dc(Pc, Pc′ |δ) = Sc

Dc′(Pc, Pc′ |δ) = Sc

we get

d

dPc
Dc ·

dPc
dδc

+
d

dPc′
Dc ·

dPc′

dδc
+

d

dδc
Dc = 0

d

dPc
Dc′ ·

dPc
dδc

+
d

dPc′
Dc′ ·

dPc′

dδc
+

d

dδc
Dc′ = 0.
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Substituting the derivative of the demand function as a function of the mass of agents

on the margins M̃cc′ , the system becomes

−[Mc∅ + (C − 1)Mcc′ ] ·
dPc
dδc

+ [(C − 1)Mc′c] ·
dPc′

dδc
+

d

dδc
Dc = 0

[Mcc′ ] ·
dPc
dδc
− [Mc′∅ +Mc′c] ·

dPc′

dδc
+

d

dδc
Dc′ = 0.

Due to the symmetry of the problem, Mcc′ = Mc′c, Mc∅ = Mc′∅, and d
dδc
Dc = −(C −

1) d
dδc
Dc′ . The formula in the text then follows from solving the system.

C.3. Convergence Rates for Random Economies. We begin by bounding the

difference between market clearing cutoffs in a continuum economy and in a finite

approximation.

Proposition C1. Assume that the continuum economy E = [η, S] admits a unique

stable matching µ, and
∑

c Sc < 1. Let P ∗ be the associated market clearing cutoff, and

assume D(·|η) is C1, and ∂D(P ∗) is invertible. Then there exists α ≥ 0 such that, for

any finite economy F = [ηF , SF ], we have

sup{||P F − P ∗|| : P F is a market clearing cutoff of F}
≤ α · ( sup

P∈[0,1]C
||D(P |η)−D(P |ηF )||+ ||S − SF ||).

The proposition shows that the distance between market clearing cutoffs of a contin-

uum economy and a discrete approximation is of the same order of magnitude as the

distance between the associated vectors of capacities, plus the difference between the

demand functions. Therefore, the continuum model is a good approximation as long as

the distance between the empirical distribution of types ηF and η and the per capita

supply vectors SF and S is small.

Proof. Note that since
∑

c Sc < 1, market clearing cutoffs satisfy z(P |E) = 0. In what

follows we always take α to be large enough such that, for any finite economy F such

that the bound in the proposition has any content (that is, the right side is less than

one),
∑

c S
F
c < 1. This guarantees that market clearing cutoffs in such an economy

must satisfy z(P |F ) = 0.

The proof begins by showing that at economy E, cutoffs P that are far from the

market clearing cutoff P ∗ have large excess demands, in the sense that their norm is

bounded below by a multiple of the distance to the market clearing cutoff P ∗. Formally,

let Bε = {P ∈ [0, 1]C : ‖P − P ∗‖ < ε}. Let

P ε = arg min
P 6/∈Bε

||z(P |E)|| and

M ε = min
P /∈Bε

||z(P |E)||.
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Note that, due to the continuity of the demand function, both P ε and M ε are well

defined. Moreover, P ε may be a set of values, in the case of multiple minima. In what

follows, we will take a single-valued selection from this set, so that P ε represents one

of the minima. With this convention, M ε = ‖z(P ε|E)‖. We will now show that there

exists α > 0 such that for all 0 < ε ≤ 1

M ε ≥ 1

α
· ε.

To see this, note that since D(·|E) is C1, we have that

(3) z(P |E) = D(P |E)− S = ∂D(P ∗|E) · (P − P ∗) + g(P − P ∗),

where the continuous function g(·) satisfies that for any ε′ > 0, there exists δ > 0 such

that, for all P ∈ Bδ,
‖g(P − P ∗)‖
‖P − P ∗‖ < ε′.

Since ∂PD(P ∗|E) is nonsingular, we may take A > 0 such that

(4) ||∂PD(P ∗|E) · v|| ≥ 2A · ||v||,

for any vector v ∈ RC .

By the property of g(·) above, with ε′ = A, we may take 0 < ε0 ≤ 1 such that

(5)
||g(P − P ∗)||
||P − P ∗|| < A

for all P ∈ Bε0 . Therefore, for all P ∈ Bε0 we have

||z(P |E)|| = ||∂D(P ∗|E) · (P − P ∗) + g(P − P ∗)||
≥ ||∂D(P ∗|E) · (P − P ∗)|| − ||g(P − P ∗)||

≥ 2A · ||P − P ∗|| − ||g(P − P ∗)
||P − P ∗|| || · ||P − P

∗||

≥ 2A · ||P − P ∗|| − A · ||P − P ∗||
= A · ||P − P ∗||.

The first equality follows from the derivative formula for excess demand in equation

(3). The inequality in the second line follows from the triangle inequality. The inequality

in the third line follows from the bound in inequality (4) for the left term, and algebra

for the right term. The inequality in the fourth line is a consequence of applying the

bound in inequality (5) to the right term. Finally, the last line follows from subtracting

the right term from the left term. The above reasoning establishes that for all P ∈ Bε0

excess demand is bounded from below by

‖z(P |E)‖ ≥ A · ‖P − P ∗‖,
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which is linear in ‖P −P ∗‖. In particular, this implies that, for all 0 < ε < ε0, we have

(6) M ε ≥ min{A · ε,M ε0}.

We will now use this bound to obtain a bound that is valid for all 0 < ε ≤ 1. Since

E has a unique stable matching we have that M ε0 > 0. Take α > 0 such that

1

α
= min{A,M ε0}.

Therefore, if 0 < ε < M ε0/A we have M ε ≥ min{A · ε,M ε0} = A · ε ≥ 1
α
· ε. If

M ε0/A ≤ ε ≤ 1, then M ε ≥ min{A · ε,M ε0} = M ε0 ≥ 1
α
≥ 1

α
ε. Either way, we have the

desired bound

(7) M ε ≥ 1

α
· ε

for all 0 < ε ≤ 1.

We now prove the proposition. If P F is a market clearing vector of the finite economy

F then

‖z(P F |E)− z(P F |F )‖ = ‖z(P F |E)‖ ≥ 1

α
· ‖P F − P ∗‖.

The first equality follows from excess demand at a strictly positive market clearing

cutoff being 0, and the second by the bound for M ε in inequality (7). Moreover, by the

triangle inequality we have that

||z(P F |E)− z(P F |F )|| ≤ ||D(P F |η)−D(P F |ηF )||+ ||S − SF ||
≤ sup

P∈[0,1]C
||D(P |η)−D(P |ηF )||+ ||S − SF ||.

Combining these two inequalities we obtain the desired bound

‖P F − P ∗‖ ≤ α · ( sup
P∈[0,1]C

‖D(P |η)−D(P |ηF )‖+ ‖S − SF‖).

�

Using this bound, we can prove the results on sequences of randomly drawn finite

economies.

Proof. (Proposition 3)

Part (1): Almost sure convergence.

First we show that that the sequence of random economies {F k}k∈N converges to

E almost surely. It is true by assumption that Sk converges to S. Moreover, by

the Glivenko-Cantelli Theorem, the realized measure ηk converges to η in the weak-

* topology almost surely. Therefore, by definition of convergence, we have that F k

converges to E almost surely. This implies, by Theorem 2, that µk converges to µ.

Part (2): Bound on ‖P ∗ − P k‖.
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By Proposition C1, we may take α0 ≥ 0 such that, for all k, realization of the discrete

economy F k, and market clearing cutoff P k of F k,

(8) ‖P k − P ∗‖ ≤ α0 · ( sup
P∈[0,1]C

‖D(P |η)−D(P |ηk)‖+ ‖S − Sk‖).

Let the agents in finite economy F k be θ1,k, θ2,k, . . . , θk,k. The demand function at

economy F k is the random variable

Dc(P |ηk) =
∑

i=1,...,k

1θi,k∈{θ∈Θ:Dθ(P )=c}/k.

That is, Dc are similar to empirical distribution functions, measuring the fraction of

agents θi,k whose types are in the set {θ ∈ Θ : Dθ(P ) = c}. By the Vapnik-Chervonenkis

Theorem,4 there exists exists α1 such that the probability

Pr{ sup
P∈[0,1]C

|D(P |ηk)−D(P |η)| > ε/2α0} ≤ α1 · exp(−k
8

(
ε

2α0

)2).

Note that this bound is uniform in P .

If this is the case, by equation (8), the distance of all market clearing cutoffs P k of

F k is bounded by

||P k − P ∗|| ≤ α0ε/2α0 + α0 · ||S − Sk||
≤ ε/2 + α0/k.

Therefore, for k ≥ k0 ≡ 2α0/ε,

‖P k − P ∗‖ ≤ ε.

This implies that there exist α ≥ 0 and β > 0 such that the probability that F k has

any market clearing cutoffs with |P k − P ∗| > ε is lower than αe−βk, for any k ≥ k0.

Moreover, we may take α such that the bound is only informative for k ≥ k0, so that

the bound holds for all k as in the proposition statement. This completes the proof.

Part (3): Bound on Gk.

Let f̄ be the supremum of the density of η. Denote the set of agents with scores

which have at least one coordinate close to P ∗c as

Θ̄ = {θ ∈ Θ : ∃c ∈ C : ‖eθc − P ∗c ‖ ≤ ε/4Cf̄}.

4See Theorem 12.5 in Devroye et al. (1996) p. 197. As remarked in p. 198, the bound given in p.
197 is looser than the bound originally established by Vapnik and Chervonenkis (1971), which we
use. The simple proof given in Devroye et al. (1996) follows the lines of Pollard (1984). The theorem
can be proven using Hoeffding’s inequality, and generalizes the Dvoretzky et al. (1956) inequality
to the multidimensional case, and to arbitrary classes of measurable sets, not only sets of the form
{x ∈ Rn : x ≤ x̄}. The important requirement for the theorem to apply in our setting is that the
Vapnik-Chervonenkis dimension of the class of sets {θ ∈ Θ : Dθ(P ) = c} is finite.
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The η measure of the set Θ̄ is bounded by

η(Θ̄) ≤ 2Cf̄ · (ε/4Cf̄) = ε/2.

Let the agents in finite economy F k be θ1,k, θ2,k, . . . , θk,k. The fraction of agents in

economy F k that have types in Θ̄ is given by the random variable

G̃k =
∑

i=1,...,k

1θi,k∈Θ̄/k.

By the Vapnik-Chervonenkis Theorem, in the argument of Part (2), we could have

taken the constants α′ ≥ 0 and β′ > 0 in a way that the probability that both the

fraction of agents with types in Θ̄ differs from the expected number η(Θ̄) ≤ ε/2 by

more than ε/2 is lower than α′e−β
′k/2, and the probability

Pr{ sup
P∈[0,1]C

‖D(P |ηk)−D(P |η)‖ > ε/2α0} ≤ α′e−β
′k/2.

If neither event happens, then G̃k ≤ ε/2 + ε/2 = ε. Moreover, whenever this is the

case all agents θ matched to a college different than Dθ(P ∗) must be in Θ̄, so that

Gk ≤ G̃k ≤ ε. The probability that neither event happens is at least 1 − α′e−β′k/2 −
α′e−β

′k/2 = 1 − α′e−β′k. Therefore, the probability that Gk > ε is bounded above by

α′e−β
′k, as desired. �

C.4. Non-Robustness. Finally, we now prove the result on non-robustness of the set

of stable matchings when there are multiple stable matchings.

Proof. (Proposition 1)

Suppose P > P−; the case P < P+ is analogous. Assume N is small enough such

that all points P ′ ∈ N satisfy P ′ > P−. Denote E = [η, S], and let Ek = [η, Sk], where

Skc = Sc + 1/Ck. Consider a sequence {P k}k∈N of market clearing cutoffs of Ek. Then∑
c∈C

Dc(P
k|η) =

1

k
+
∑

Sc.

Note that, for all points P ′ in N ,∑
c∈C

Dc(P
′|η) ≤

∑
c∈C

Dc(P
−|η) =

∑
Sc <

∑
Skc .

However, for large enough k,
∑
Skc < 1, which means that for any market clearing cutoff

P k of Ek we must have D(P k|η) = Skc , and therefore there are no market clearing cutoffs

in N . �
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Supplementary Appendix (Not for
Publication)

The supplementary appendix contains additional results discussed in the paper. Ap-

pendix D extends the basic model to allow for flexible wages and contracts, albeit

maintaining the assumption of responsive preferences. Appendix E discusses the con-

nection between pre-matchings and cutoffs, and Appendix F gives an example of a

school choice problem where DA-STB is inefficient.

Appendix D. Matching with Flexible Wages and Contracts

In many markets, agents negotiate not only who matches with whom, but also wages

and other contractual terms. When hiring faculty most universities negotiate both in

wages and teaching load. Firms that supply or demand a given production input may

negotiate, besides the price, terms like quality or timeliness of the deliveries. This

section extends the continuum model to include these possibilities. Remarkably, it is

still the case that stable matchings have the simple cutoff structure described above.

We highlight, however, that this holds under the assumption of responsive preferences,

which we make throughout. The extension permits the comparison of different market

institutions, such as personalized versus uniform wages.

D.1. The Setting. Following the standard terminology, we now consider a set of doc-

tor types θ ∈ Θ distributed according to a measure η, a finite set of hospitals h ∈ H,

with H also denoting the number of hospitals, and a set of contracts X. η is defined

over a σ-algebra ΣΘ. Each contract x in X specifies

x = (θx, hx, wx).

That is, a doctor θx, a hospital hx, and other terms of the contract wx. In addition, the

set of contracts is assumed to contain an empty contract ∅ ∈ X, which corresponds to

being unmatched. A case of particular interest, which we later return to, is when w is

a wage, and agents have quasilinear preferences.

A matching is a function µ : Θ ∪H → X ∪ 2X , such that

(1) For all θ ∈ Θ: µ(θ) ∈ {x : x = ∅ or θx = θ}.
(2) For all h ∈ H: µ(h) ⊆ {x : hx = h}, the set {θx : x ∈ µ(h)} is measurable, and

η({θx : x ∈ µ(h)}) ≤ Sh.

(3) If hµ(θ) = h then µ(θ) ∈ µ(h), and if for some x ∈ µ(h) we have θx = θ, then

µ(θ) = x.

That is, a matching associates each doctor (hospital) to a (set of) contract(s) that

contains it, or to the empty contract. In addition, each doctor can be assigned to
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at most one contract. We say that a hospital h and a doctor θ are matched at µ

if hµ(θ) = h. Moreover, hospitals must be matched to a set of doctors of measure

not exceeding its capacity Sh. Finally, (3) is a consistency condition that a doctor is

matched to a hospital iff the hospital is matched to the doctor.

Models of matching with contracts have been proposed by Kelso and Crawford (1982);

Hatfield and Milgrom (2005).5 Those papers define stable matchings with respect to

preferences of firms over sets of contracts. We focus on a simpler model, where stability

is defined with respect to preferences of firms over single contracts. This corresponds to

the approach that focuses on responsive preferences in the college admissions problem.

This restriction considerably simplifies the exposition, as the same arguments used in

the previous sections may be applied. Responsive preferences are considerably more

restrictive than the most general preferences considered in the literature. In what

follows, we assume that hospitals have preferences over single contracts that contain

it, and the empty contract, and agents have preferences over contracts that contain

them and over being unmatched.

Assume that doctors’ preferences can be expressed by a utility function uθ(x), and

hospitals’ by a utility function πh(x). The utility of being unmatched is normalized to

0. In the continuum model, we impose some restrictions on preferences and the set of

available contracts. Let Xθ
h be the set of contracts that contain both a hospital h and

a doctor θ.

Assumption D1. (Regularity Conditions)

• (Compactness) There exists M > 0 such that, for any doctor-hospital pair

θ, h, the set

{(uθ(x), πh(x))|x ∈ Xθ
h}

is a compact subset of [0,M ]2.

• (No Redundancy) Given θ, h, no contract in x ∈ Xθ
h weakly Pareto dominates,

nor has the same payoffs as another contract x′ ∈ Xθ
h.

• (Completeness) Given a hospital h ∈ H and 0 < p ≤M , there exists a doctor

θ such that Xθ
h′ = ∅ for h′ 6= h, and

sup
x:uθ(x)>0

πh(x) = max
x:uθ(x)≥0

πh(x) = p.

• (Measurability) Given any Lebesgue measurable set K in R2 and h ∈ H, the

σ-algebra ΣΘ contains all sets of the form

{θ ∈ Θ|K = {(uθ(x), πh(x))|x ∈ Xθ
h}}.

5See Sönmez and Switzer (2012); Sönmez (2013) for applications of these models to real-life market
design problems.
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The assumptions accommodate many cases of interest, such as the transferable utility

model considered below. The conditions make the analysis based on cutoffs tractable

for the following reasons. The compactness and no redundancy assumptions guarantee

that, for any hospital-doctor pair, there always exists a unique contract that is optimal

for the doctor subject to giving the hospital a minimum level of profits. Complete-

ness guarantees that there is always a marginal doctor type that is not matched to

a hospital, even if this doctor type is not in the support of the distribution of types.

The measurability condition guarantees that the measure η over the set of doctors is

sufficiently rich so that a matching defined by cutoffs is measurable.

We are now ready to define stable matchings. Note that, since we only consider

contracts yielding non-negative payoffs to both parties, we do not have to worry about

individual rationality. A doctor-hospital pair θ, h is said to block a matching µ if there

is a contract x = (θ, h, w) that θ prefers over µ(θ), that is uθ(x) > uθ(µ(θ)), and either

(i) hospital h does not fill its capacity η({θx′ : x′ ∈ µ(h)}) < Sh, and h prefers x to the

empty contract, πh(x) > 0, or (ii) h is matched to a contract x′ ∈ µ(h) which it likes

strictly less than contract x, that is πh(x
′) < πh(x).

Definition D1. A matching µ is stable if it has no blocking pairs.

D.2. Cutoffs. We now show that, within our matching with contracts framework, the

allocation of doctors to hospitals is determined by an H-dimensional vector of cutoffs.

It is convenient to think of cutoffs as the marginal value of capacity at each hospital –

how much utility the hospital would gain from a small increase in capacity. Cutoffs are

numbers Ph ∈ [0,M ], and a vector of cutoffs P ∈ [0,M ]H .

Denote an agent’s maximum utility of working for a hospital h and providing the

hospital with utility of at least Ph as

ūθh(P ) = supuθ(x)

s.t. x ∈ Xθ
h

πh(x) ≥ Ph.

We refer to this as the reservation utility6 that hospital h offers doctor θ. Note

that the reservation utility may be −∞ if the feasible set {x ∈ Xθ
h : πx(x) ≥ Ph} is

empty. Moreover, whenever this sup is finite, it is attained by some contract x, due to

the compactness assumption. We define ūθ∅(·) ≡ 0.

Now define a doctor’s demand as the hospital that offers her the highest reservation

utility given a vector of cutoffs. Note that doctors demand hospitals, and not contracts.

6Note that, even though formally ūθh(P ) depends on the entire vector P , it is constant on the coordinates
P−h.
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The demand of a doctor θ given a vector of cutoffs P is

Dθ(P ) = arg max
H∪{∅}

ūθh(P ),

Demand may not be uniquely defined, as an agent may have the same reservation utility

in more than one hospital.

Henceforth, we will make the following assumption, which guarantees that demand

is uniquely defined for almost all doctors.

Assumption D2. (Strict Preferences) For any cutoff vector P ∈ [0,M ]C, and

hospital h, the following sets have η-measure 0:

• The set of doctors with ūθh(P ) = ūθh′(P ) > 0 for some hospital h′ 6= h.

• The set of doctors for which ūθh(P ) = 0.

• The set of doctors for which ūθh(P ) is not continuous at P .

The first two requirements ask that, for any vector of cutoffs P , the set of doctors

who are indifferent between the best offers of two hospitals, or of a hospital and being

unmatched, has measure 0. This is true if there is sufficient heterogeneity of preferences

in the population, with types having a non-atomic distribution, hence why this is termed

a strict preferences assumption. The third condition is that, at a fixed P , reservation

utility varies continuously for almost all doctors. The intuition is that, since reservation

utility is decreasing in Ph, it can be discontinuous for at most a countable number of

values of Ph. The assumption is that there is sufficient heterogeneity among doctors

such that these discontinuities coincide for only a measure 0 set of doctors.

From now on, we fix a measurable selection from the demand correspondence, so that

it is a function. The aggregate demand for a hospital is defined as

Dh(P ) = η({θ ∈ Θ : Dθ(P ) = h}).

The aggregate demand vector is defined as D(P ) = {Dh(P )}h∈H . Note that Dh(P ) does

not depend on the arbitrarily defined demand of agents which are indifferent between

more than one hospital, by the strict preferences assumption. Furthermore, demand is

continuous in P , as shown by the following claim.

Claim D1. D(P ) is continuous in P

Proof. Take an arbitrary vector of cutoffs P0 and constant ε > 0. To establish continuity

we will show that there there exists δε > 0 such that ‖D(P ) − D(P0)‖ < ε for any P

with ‖P − P0‖ ≤ δε. To see this, define for any δ > 0 the set

Θδ = {θ ∈ Θ : |ūθh(P )− ūθh(P0)| < ε/2, for all h and P with ‖P − P0‖ < δ,

|ūθh′(P0)− ūθh(P0)| > δ, for all hospitals h, h′, and

|ūθ∅(P0)− ūθh(P0)| > δ, for all hospitals h}.
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Note that the intersection of all such sets is contained in the following set:

∩δ>0Θδ ⊆ {θ ∈ Θ : ūθh is continuous at P0for all h,

ūθh′(P0) 6= ūθh(P0), for all hospitals h, h′, and

ūθ∅(P0) 6= ūθh(P0), for all hospitals h}.

Moreover, by Assumption D2, this latter set has measure 0. Since the Θδ are nested,

we can take δε small enough such that η(Θδε) < ε/2, and δε < ε/2.

To complete the proof, we will show that, for any P such that ‖P −P0‖ < δε, we have

‖D(P ) − D(P0)‖ < ε. To see this, consider θ ∈ Θδε . If Dθ(P0) 6= ∅, let h = Dθ(P0).

Then, for any h′ 6= h,

ūθh′(P ) < ūθh′(P0) + ε/2 < ūθh(P0)− ε/2 + ε/2 = ūθh(P ).

The first inequality follows from the first condition in the definition of Θδε . The second

inequality follows from ūθh(P0) > ūθh(P ), from the second condition in the definition of

Θδε , and the fact that δε < ε/2. This argument, and an analogous argument with ∅
instead of h′, implies that Dθ(P ) = Dθ(P0). Likewise, an analogous argument holds

when Dθ(P0) = ∅. Therefore, for all θ ∈ Θδε , we have Dθ(P ) = Dθ(P0). Since

η(Θδε) < ε, we have that ‖D(P )−D(P0)‖ < ε, as desired.

A market clearing cutoff is defined exactly as in Definition 2. Given a stable

matching µ, let P = Pµ be given by

Ph = inf{πh(x)|x ∈ µ(h)},

if η(µ(h)) = Sh and Ph = 0 otherwise. Given a market clearing cutoff P , we define

µ = MP as follows. Consider first a doctor θ. If Dθ(P ) = ∅, then θ is unmatched:

µ(θ) = ∅. If Dθ(P ) = h ∈ H, then µ(θ) is defined as the contract that gives the highest

payoff to h conditional on θ not having a better offer elsewhere. Formally,

µ(θ) = arg max
x∈Xθ

h

πh(x)

s.t. uθ(x) ≥ ūθh′(P ) for all h′ 6= h,(9)

Note that µ(θ) is uniquely defined, by the compactness and no redundancy assumptions.

Since we defined µ(θ) for all doctors, we can uniquely define it for each hospital as

µ(h) = {µ(θ) : θ ∈ Θ and hµ(θ) = h}.

�

We have the following extension of the supply and demand lemma.
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Lemma D1. (Supply and Demand Lemma with Contracts) If µ is a stable

matching, then Pµ is a market clearing cutoff, and if P is a market clearing cutoff then

MP is a stable matching.

Proof. Part 1. If µ is a stable matching, then P = Pµ is a market clearing cutoff.

We begin by proving a claim that will be used in the proof.

Claim D2. For almost all θ and h ∈ H ∪ {φ} such that µ(θ) = h, we have Dθ(P ) = h.

Proof. Assume, to reach a contradiction, that Dθ(P ) = h′ 6= h for a positive mea-

sure of doctors. By the definition of demand, we have that, for any such doctor θ,

ūθh′(P ) ≥ maxh′′ 6=h′ ū
θ
h′′(P ). Moreover, from the strict preferences assumption, there

exists a positive mass of doctor types θ such that ūθh′(P ) > maxh′′ 6=h′ ū
θ
h′′(P ), and the

functions ūθh′′(P ) for each h′′ ∈ H ∪{∅} are continuous at P . Let θ0 be one such doctor.

By the definition of ūθ0c we have that uθ0(µ(θ0)) ≤ ūθ0h (P ). Consequently, there exists a

contract x ∈ Xθ0
h′ such that

uθ0(x) > uθ0(µ(θ0))

πh′(x) > Ph′ .

We now show that this implies that θ0 and h′ block the matching µ. By definition

of P , and the completeness assumption, there exist contracts in µ(h′) giving hospital

h′ payoffs arbitrarily close to Ph′ . Therefore, there exists a contract x′ ∈ µ(h′) with

πh′(x
′) < πh′(x), so that h′ and θ0 block µ. This contradicts the fact that µ is stable. �

This claim implies that D(P ) ≤ S. To prove that P is a market clearing cutoff, we

only have to show that for any h such that Ph > 0, we have D(P ) = S. To see this, note

that, by the completeness assumption, there exists a doctor θ who may only contract

with hospital h, and such that

max
x:uθ(x)≥0

πh(x) < Ph,

and there exists a contract x ∈ Xθ
h with

πh(x) > 0

uθ(x) > 0.

Note that, by the definition of P , θ is not matched to h at µ, as h is only matched

to contracts that yield utility of at least Ph. Therefore, θ is unmatched at µ, that is

µ(θ) = ∅. Since µ is stable, θ and h cannot be a blocking pair, and therefore h must be

matched to a mass Sh of doctors, that is

η({θ : hµ(θ) = h}) = Sh.
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Using the claim proved above, we have that

Dh(P ) = η({θ : hµ(θ) = h}) = Sh,

completing the proof of Part 1.

Part 2. If P is a vector of market clearing cutoffs, then µ =MP is a stable matching.

First note that µ is a matching. It satisfies the requirement that doctors are matched

to hospitals, that hospitals are matched to sets of doctors, and the consistency re-

quirements by definition. Since Dθ(P ) is a measurable selection from the demand

correspondence, it satisfies the requirement that hospitals are matched to measurable

sets of doctors. And finally, it satisfies that each hospital is matched to a set of doctors

not exceeding its capacity, because P being a market clearing cutoff implies D(P ) ≤ S.

We now show that µ is stable. The proof uses the following claim.

Claim D3. For all h ∈ H and x ∈ µ(h), we have πh(x) ≥ Ph.

Proof. Let θ = θx. By definition of M,

ūθh(P ) ≥ max
h′∈H∪{∅}

ūθh′(P ).

Therefore, by definition of ūθh, there exists x′ ∈ Xθ
h such that

uθ(x′) ≥ max
h′∈H∪{∅}

ūθh′(P )

πh(x
′) ≥ Ph.

Moreover, by the definition of M, we have πh(x) ≥ πh(x
′). Consequently, πh(x) ≥ Ph,

as desired. �

To see that µ is stable, note that, by the no redundancy assumptions, no contracts

are Pareto dominated, so that there can only be blocking pairs formed of agents who

are not matched to each other. Consider a pair θ, h, who are not matched at µ. We

will show they cannot form a blocking pair. First note that, by the definition of M,

(10) uθ(µ(θ)) ≥ ūθh(P ).

Consider now the case where Dh(P ) < Sh. Therefore, Ph = 0. This implies that

ūθh(P ) = max
x∈Xθ

h

uθ(x).

Equation (10) then implies that

uθ(µ(θ)) ≥ max
x∈Xθ

h

uθ(x),

and therefore θ and h are not a blocking pair.

Finally consider the case where Dh(P ) = Sh. The definition of M then implies

that the mass of doctors matched to h at µ equals Sc. By Claim D3, for all contracts
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x ∈ µ(h), we have πh(x) ≥ Ph. If there exists x′ ∈ Xθ
h such that πh(x

′) ≥ Ph, we then

have that uθ(x′) ≤ ūθh(P ). Therefore, by equation (10), we have that uθ(x′) ≤ uθ(µ(θ)).

Consequently, θ and h are not a blocking pair. This completes the proof. �

Note that, in the matching with contracts setting, there is no longer a bijection

between market clearing cutoffs and stable matchings. This happens for two reasons,

one substantial and one technical. The substantial reason is that the contract terms

w are not uniquely determined by cutoffs, as there is room for doctors and hospitals

to share the surplus of relationships in different ways, without violating stability. The

technical reason is that we have not imposed a condition akin to the open on the right

condition in the model from Section 2, which precludes multiplicities of stable matchings

that differ in measure 0 sets.

D.3. Existence. To establish the existence of a stable matching, we must modify the

previous argument, which used the deferred acceptance algorithm. One simple modifica-

tion is using a version of the algorithm that Biró (2007) terms a “score limit algorithm”,

which calculates a stable matching by progressively increasing cutoffs to clear the mar-

ket. A straightforward application of Tarski’s fixed point theorem gives us existence in

this case.

Proposition D1. A stable matching with contracts always exists.

Proof. Consider the operator T : [0,M ]H → [0,M ]H defined by P ′ = TP is the smallest

solution P ′ ∈ [0,M ]H to the system of inequalities

Dh(P
′
h, P−h) ≤ Sh.

We will show that this operator has a fixed point, and that this fixed point is a market

clearing cutoff.7

First note that, by the continuity of Dh, and since Dh(M,Ph) = 0, the smallest

solution to this equation is well-defined. Therefore, T is well-defined. Moreover, since

Dh(P
′
h, P−h) is weakly increasing in P−h and weakly decreasing in P ′h we have that T is

weakly increasing in P . We know that T takes the cube [0,M ]H into itself, by definition.

By Tarski’s fixed point theorem, T has a fixed point.

It only remains to show that every fixed point P ∗ of T is a market clearing cutoff.

By definition of T we have that Dh(P
∗) ≤ Sh for all hospitals h ∈ H, so that demand

for no hospital exceeds supply. Consider h such that P ∗h > 0. By definition of T we

have that

Dh(Ph, P
∗
−h) > Sh

7A cutoff limit algorithm can be described as starting with cutoffs of 0, and successively applying the
operator T . What T does in each step is raising the cutoff of each hospital just enough to clear the
market for the hospital given the cutoffs of other hospitals.
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for any Ph < P ∗h . By continuity of demand we have that Dh(P
∗) ≥ Sh, which combined

with the fact that demand does not exceed supply implies that Dh(P
∗) = Sh, and

therefore P ∗ is a market clearing cutoff. �

D.4. The Quasilinear Case. A particularly interesting case of the model is when

contracts only specify a wage w, and preferences are quasilinear. That is, the utility of

a contract x = (θ, h, w) is

uθ(x) = uθh + w

πh(x) = πθh − w

and contracts include all possible values of w, such that these values are in [0,M ].

Define the surplus of a doctor-hospital pair as

sθh = uθh + πθh.

We assume that M is large enough so that, for all θ in the support of η we have 0 ≤
sθi ≤ M , so that doctors and hospitals may freely divide the surplus of a relationship.

We assume moreover that assumptions D1 and D2 hold. Denote a model satisfying

the above properties as a matching with contracts model with quasilinear preferences.

From the definition of reservation utility we get that, for all doctors in the support of

η,

ūθh(P ) = sθh − Ph.
Therefore, in any stable matching, doctors are sorted into the hospitals where sθh−Ph

is the highest, subject to it being positive. One immediate consequence is that doctors

do not go necessarily to the hospital where they generate the largest surplus sθh. If

Ph 6= Ph′ , it may be the case that sθh > sθh′ , but doctor θ is assigned to h′. However,

the allocation of doctors to hospitals does maximize the total surplus generated in the

economy, given the capacity constraints (see Azevedo (2014) Appendix A.2). Figure

D1 plots a stable matching in an economy with two hospitals.

Let the distribution of surplus vectors sθ be ηs. We then have the following uniqueness

result.

Proposition D2. Consider a matching with contracts model with quasilinear prefer-

ences. If ηS has full support over [0,M ]C then there is a unique vector of market clearing

cutoffs.

Proof. We begin by showing that the set of market clearing cutoffs is a lattice.

Claim D4. The set of market clearing cutoffs is a complete lattice.
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sθ1

sθ2

H1

H2
H12

H21

∅

Figure D1. A matching with transferable utility with two hospitals.
The square represents the set of possible surplus vectors sθ. Doctors in
regions H1 and H12 are matched to hospital 1, and doctors in regions H2

and H21 to hospital 2.

Proof. Define the operator T : [0,M ]H → [0,M ]H as follows. Let TP = P ′, with P ′h
being the solution to

(11) Dh(P
′
h, P−h) = Sh

if such a solution P ′h ∈ [0,M ] exists, and 0 otherwise.8 We will show that set of fixed

points of T equals the set of market clearing cutoffs.

Note that, since Dh(M,P−h) = 0 and demand is continuous, if a solution p to

D(p, P−h) does not exist, then D(p, P−h) < Sh for all p ∈ [0,M ], and therefore P ′h = 0

and D(P ′h, P−h) < Sh. We will use this observation to show that the fixed points of T

correspond to market clearing cutoffs.

Consider a fixed point P ∗ of T . For a given h, since TP ∗ = P ∗, either equation (11)

has a solution, and we have Dh(P
∗) = Sh, or the equation has no solutions, in which

case Dh(P
∗) < Sh and P ∗h = 0. Therefore, P ∗ is a market clearing cutoff.

Consider now a market clearing cutoff P ∗. For any hospital h ∈ H, if P ∗h > 0, we

have that Dh(P
∗) = Sh, so that (TP ∗)h = P ∗h . If P ∗h = 0 we have that either the market

clears exactly, Dh(P
∗) = Sh, in which case (TP ∗)h = P ∗h , or that h is in excess supply,

Sh > Dh(P
∗) ≥ Dh(p, P

∗
−h) for all p ∈ [0,M ], and therefore (TP ∗)h = 0 = P ∗h . Since

this holds for all hospitals, P ∗ is a fixed point.

Now that we have established that the set of fixed points of T equals the set of market

clearing cutoffs, we can show that this set if a lattice. To see this, note that T is weakly

8Note that, if the solution to the equation defining P ′h exists, it is unique, as the full support assumption
implies that the left side is strictly decreasing in P ′h.
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increasing in P , and takes [0,M ] in itself. Therefore, by Tarski’s Theorem, the set of

fixed points is a non-empty complete lattice. �

Let P− and P+ be the smallest and largest market clearing cutoffs. Let H+ be the

subset of hospitals for which P+
h > P−h . That is

H+ = {h ∈ H : P+
h > P−h }.

In particular, for all h ∈ H+ we have P+
h > 0.

If H+ is empty, then P− = P+, and we are done. Assume henceforth that H+ is

nonempty. Since both P− and P+ are market clearing cutoffs, we have that∑
h∈H+

Dh(P
−) ≤

∑
h∈H+

Sh =
∑
h∈H+

Dh(P
+).

However, since P−h = P+
h for h /∈ H+, and P−h < P+

h for all h ∈ H+ we have that∑
h∈H+

Dh(P
−) ≥

∑
h∈H+

Dh(P
+).

Therefore, ∑
h∈H+

Dh(P
−) =

∑
h∈H+

Dh(P
+).

Under the assumption that the support of ηs is the set [0,M ]H , this can only be true

if P− = P+, completing the proof. �

The proposition guarantees that the allocation of doctors to hospital is unique, up

to a measure 0 set of doctors.9 However, the stable matching is not unique, as wages

are not uniquely determined by stability. The intuition is that, in a stable matching,

a hospital may offer a doctor any wage such that the doctor’s utility is above that in

her next best choice, and the hospital’s gain from the relationship above its reservation

value of capacity. Therefore, in general the surplus sθh can be divided in different ways

without compromising stability.

Appendix E. Relationship to Pre-Matchings

This section clarifies the connection and differences between the cutoffs approach to

stable matchings, and the approach using pre-matchings proposed by Adachi (2000)

and Echenique and Oviedo (2004, 2006).

The key advantage of the pre-matchings approach is that stable matchings can be

analyzed as fixed points of a monotone operator in the set of pre-matchings. Although

9This result is related to a standard uniqueness result in markets with a finite number of participants.
With a finite number of doctors and hospitals, the allocation of doctors to hospitals is generically
unique. This is true because generically there is a unique allocation that maximizes aggregate surplus.
In contrast, with a continuum of doctors, strict preferences, and full support of ηC , the matching that
maximizes aggregate surplus is unique for almost every doctor.
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the set of pre-matchings is much larger set than the set of matchings, this result is

useful for deriving general lattice theoretic results, due to the monotonicity of the

operator. Echenique and Oviedo (2006) use the fixed point result to establish results

on the existence and structure of the set of stable matchings in models with very general

preferences and many to many matching. The cutoff approach is different. One way

to see this is that the set of cutoffs is much smaller than the set of all pre-matchings.

Cutoffs are useful in different applications, such as deriving simple comparative statics

with responsive preferences.

In this section we show that there is a connection between the two approaches. When

colleges have responsive preferences, the intermediate steps of the monotone operator

used by Echenique and Oviedo (2006) can be written in terms of cutoffs. With this

observation, we can show that, in the case of responsive preferences, our result that M̃P̃
restricted to the set of stable matchings is the identity is closely related to the result

that fixed points of the monotone operator proposed by Adachi (2000) and Echenique

and Oviedo (2006) correspond to stable matchings.

E.1. Formal Definition of Pre-matchings and the Fixed Point Operator. Con-

sider a finite set C of colleges c and finite set Θ̃ of students θ .

Definition E1. A prematching ν = (νC , νΘ̃) is a pair of functions

νC : C −→ 2Θ̃

νΘ̃ : Θ̃ −→ C ∪ Θ̃,

such that, for all θ ∈ Θ̃, νΘ̃(θ) ∈ C or νΘ̃(θ) = θ.

That is, a prematching ν specifies a set of students νC(c) matched to each college c,

and a college or remaining unmatched νΘ̃(θ) to each student θ. There is no consistency

requirement between νC and νΘ̃. We denote the set of pre-matchings by V = VC ×VΘ̃,

where VC and VΘ̃ are the set of functions that may be the first and second coordinates

of a prematching. The set of pre-matchings can be thought of as being a larger set

than the set of matchings because either coordinate has sufficient information to fully

specify a matching.

We now follow Echenique and Oviedo (2006) in defining the operator T over the set

of pre-matchings, with fixed points corresponding to stable matchings. The operator

is defined in terms of choice functions, which they define using preference relations of

agents over sets of match partners. For each college c we consider a choice function

with, for any A ⊆ Θ̃, Ch(c, A) denoting the college’s preferred subset of A. Likewise,

for each student we consider a choice function Ch(θ, A) which picks a college in A or
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θ, out of any subset A ⊆ C. Given a prematching ν, define

U(c, ν) = {θ ∈ Θ̃ : c ∈ Ch(θ, νΘ̃(θ) ∪ {c})}, and

V (θ, ν) = {c ∈ C : θ ∈ Ch(c, νC(c) ∪ {θ})}.

That is, a student is in U(c, ν) if he would choose c over his assignment under νΘ̃,

and a college is in V (θ, ν) if θ would be one of its chosen students out of νC(c) ∪ {θ}.
The fixed point operator T : V → V is is defined by

(Tν)(θ) = Ch(θ, V (θ, ν))

(Tν)(c) = Ch(c, U(c, ν)).

E.2. Definition of the Fixed Point Operator with Cutoffs in the Responsive

Preferences Case. We now return to the model of Section 3.1, where students have

preferences �θ over colleges, and colleges have preferences over individual students

(given by ec), and a capacity Sc.
10

In this setting, the choice maps have a simple definition. Namely, if |A| ≤ Sc then

Ch(c, A) = A and if |A| > Sc then Ch(c, A) the subset of the Sc students in A with the

highest scores. Likewise, Ch(θ, A) is student θ’s preferred college in A if A is nonempty,

or θ otherwise.

To define the operator T using cutoffs, we must define cutoffs on both sides of the

market. A vector of cutoffs on the college side, denoted PC , is defined as in the main

text, and the set of all such cutoffs is PC ≡ [0, 1]C . A vector of cutoff in the student

side is denoted P Θ̃. For each student θ, the cutoff P Θ̃
θ ∈ C or P Θ̃

θ = θ. Intuitively, the

cutoff P Θ̃
θ denotes the least preferred college that student θ is willing to match with.

The set of student side cutoffs is denoted as PΘ̃ ≡ ×Θ̃(C ∪ {θ}).
We now define the following operators. The first two extend the operators P̃ and M̃

to pre-matchings, and the last two are the mirror images of P̃ and M̃ on the other side

of the market.

• Define PC : VC −→ PC as, for each college c, the Sc-highest score of a student

in νC(c), denoted as
(
PC(νC)

)
c
, with the convention the the Sc-highest score is

0 when there are less than Sc students in νC(c). Notice that PC coincides with

P̃ when νC corresponds to a stable matching.11

• Define MΘ̃ : PC −→ VΘ̃ in similar fashion as M̃ was defined in the main text,

(MΘ̃(PC))(θ) = Dθ(PC).

10The college preferences over individual students can be extended to responsive preferences over sets
of students.
11Formally, PC(νC) = P̃µ̃ when for all c ∈ C we have µ(c) = νC(c) and #νC(c) ≤ Sc.
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• Define PΘ̃ : VΘ̃ −→ PΘ̃ as

(PΘ̃(νΘ̃))θ = νΘ̃(θ).

• Define MC : PΘ̃ −→ VC as

(MC(P Θ̃))(c) = Ch(c, {θ : c �θ P Θ̃(θ)}).

The following Claim clarifies how the map T can be written in terms of cutoffs.

Claim E1. For any prematching ν ∈ V we have

Tν = (MCPΘ̃νΘ̃,MΘ̃PCνC).

Proof. We begin with the student side. Consider a student θ. Notice that, by definition

of the set V (θ, ν) we have

V (θ, ν) = {c ∈ C : θ ∈ Ch(c, νC(c) ∪ {θ})}.

Moreover, by the definition of the choice function, θ is chosen by college c if and only

if eθc is at least as high as the Sc-highest score at college c among the students in νC(c).

Therefore, we have

V (θ, ν) = {c ∈ C : eθc ≥
(
PC(νC)

)
c
}.

Using this equation, we can write the student side of the operator T as

(Tν)(θ) = Ch(θ, V (θ, ν))

= Ch(θ, {c ∈ C : eθc ≥
(
PC(νC)

)
c
})

= Dθ(PC(νC)).

By the definition of MΘ̃, this equals MΘ̃PC(νC) as desired.

Consider now the college side. Fix a college c. By definition of the set U(c, ν) we

have

U(c, ν) = {θ ∈ Θ̃ : c ∈ Ch(θ, νΘ̃(θ) ∪ {c})}.
Note that c ∈ Ch(θ, νΘ̃(θ) ∪ {c}) if and only if c = Ch(θ, νΘ̃(θ) ∪ {c}), as students

match to at most a single college. This is the case if and only if c �θ νΘ̃(θ). Moreover,

by definition of PΘ̃ we have (PΘ̃(νΘ̃))θ = νΘ̃(θ). Therefore,

U(c, ν) = {θ ∈ Θ̃ : c �θ (PΘ̃(νΘ̃))θ}.

Consider now the operator T . We have

(Tν)(c) = Ch(c, U(c, ν))

= Ch(c, {θ ∈ Θ̃ : c �θ (PΘ̃(νΘ̃))θ}).

By the definition of the operator MC , we have

(Tν)(c) = (MC(PΘ̃(νΘ̃)))(c),



SUPPLY AND DEMAND IN MATCHING MARKETS 33

completing the proof. �

We now discuss the relationship between our results and those of Echenique and

Oviedo (2004, 2006) and Adachi (2000). We say that a matching µ is associated with

a prematching g(µ) = ν by letting each coordinate be the matching restricted to colleges

or students, i.e., ν = (µ|C , µ|Θ̃). Note that the function g is injective. If g−1(ν) 6= ∅ we

say that prematching ν is associated with matching g−1(ν). Adachi’s main result is

that a prematching v is a fixed point of T iff it is associated with a stable matching.

First note that Adachi result is distinct from the fact that stable matchings are

associated with market clearing cutoffs. Since cutoffs are only an intermediate step in

the operator T , the fact that the fixed points of T correspond to stable matchings is

distinct from the relationship between market clearing cutoffs and stable matchings.

However, the fixed point result is closely related to our result that M̃P̃ restricted

to stable matchings is the identity map. With an analogous argument to the one we

used to prove that result, it is possible to prove that, given a stable matching µ, the

operatorMCPΘ̃ (orMΘ̃PC) takes µ|Θ̃ into µ|C (or µ|C into µ|Θ̃). By Claim E1, this is

equivalent to Adachi’s result that pre-matchings corresponding to stable matchings are

fixed points of T . Therefore, we could have derived Adachi’s fixed point result using

cutoffs, or proven the result about M̃P̃ using Adachi’s result. Note however that this

argument is only valid with responsive preferences, so that we cannot use this argument

to establish the more general results of Echenique and Oviedo (2004, 2006).

Appendix F. A Large Market Where Deferred Acceptance with Single

Tie-Breaking Is Inefficient

This section presents a simple example that shows that the deferred acceptance with

single tie-breaking mechanism (see Section 4.3) can produce Pareto dominated outcomes

for a large share of the students with high probability, even in a large market.12

Example F1. (School Choice)

A city has two schools c = 1, 2 with the same capacity. Students have priorities to

schools according to the walk zones where they live in. Half of the students live in the

walk zone of each school. In this example, the grass is always greener on the other side,

so that students always prefer the school to which they don’t have priority. The city

uses the DA-STB mechanism. To break ties, the city gives each student a single lottery

number l uniformly distributed in [0, 1]. The student’s score is

l + I(θ is in c’s walk zone).

12The example is a continuum version of an example used by Erdil and Ergin (2008) to show a
shortcoming of deferred acceptance with single tie-breaking: it may produce matchings which are ex
post inefficient with respect to the true preferences, before the tie-breaking, being dominated by other
stable matchings.
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Figure F1. The distribution of student types in Example F1. The unit
mass of students is uniformly distributed over the solid lines. The left
square represents students in the walk zone of school 2, and the right
square students with priority to school 1. The dashed lines represents
one of an infinite number of possible vectors of market clearing cutoffs
P1 = P2.

In the continuum economy induced by the DA-STB mechanism, there is a mass 1/2 of

students in the walk zone of each school, and S1 = S2 = 1/2. Figure F1 depicts the

distribution of students in the economy.

We now analyze the stable matches in this continuum economy. Note that market

clearing cutoffs must be in [0, 1], as the mass of students with priority to each school

is only large enough to exactly fill each school. Consequently, the market clearing

equations can be written, for 0 ≤ P ≤ (1, 1), as

1 = 2 S1 = (1− P1) + P2

1 = 2 S2 = (1− P2) + P1.

The first equation describes demand for school 1. 1−P1/2 students in the walk zone of

2 are able to afford it, and that is the first term. Moreover, an additional P2/2 students

in the walk zone of 1 would rather go to 2, but don’t have high enough lottery number,

so they have to stay in school 1. The market clearing equation for school 2 is the same.

These equations are equivalent to

P1 = P2.

Hence, any point in the line {P = (x, x)|x ∈ [0, 1]} is a market clearing cutoff - the

lattice of stable matchings has infinite points, ranging from a student-optimal stable

matching, P = (0, 0) to a school-optimal stable matching P = (1, 1).
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Now consider a slightly different continuum economy, that has a small mass of agents

that have no priority, so that the new mass has eθ uniformly distributed in [(0, 0), (1, 1)].

It’s easy to see that in that case the unique stable matching is P = (1, 1). Therefore,

adding this small mass undoes all stable matchings of the original continuum economy,

except for P = (1, 1). In addition, it is also possible to find perturbations that undo

the school-optimal stable matching P = (1, 1). If we add a small amount ε of capacity

to school 1, the unique stable matching is P = (0, 0). And if we reduce the capacity of

school 1 by ε/2, the unique stable matching is P = (1+ε, 1), which is close to P = (1, 1).

Consider now a school choice problem where, in addition to these students, there is

a small mass of students that have no priority, and prefer school 1. By the argument

in the above paragraph, the only stable matching of the continuum economy induced

by the new school choice problem is one where P = (1, 1). Therefore, this school

choice problem leads to agents attending the school to which they have priority with

probability close to 1. However, it is a stable allocation for all students with priorities to

attend the school they prefer. Therefore, DA-STB produces outcomes that are Pareto

dominated for many students relative to a stable allocation. This is in contrast with

the result by Che and Kojima (2010), who show that in the case without priorities the

RSD mechanism is approximately ordinally efficient in a large market.

Appendix G. Asymptotic Distribution of Cutoffs

This section derives the asymptotic distribution of cutoffs in randomly generated dis-

crete economies as in Section 4.2. The results show that the asymptotic distribution is

a multivariate normal, with mean centered at the continuum cutoffs, covariance matrix

given by a formula below, and standard deviations proportional to the inverse of the

square root of the number of students. We then gauge the fit of the asymptotic distribu-

tion to realistic market sizes with simulations. In what follows
d→ denotes convergence

in distribution. The following result uses similar assumptions as Proposition 3.

Proposition G1. Assume that the continuum economy E = [η, S] admits a unique

market clearing cutoff P ∗, and
∑

c Sc < 1. Let F k = [ηk, Sk] be a randomly drawn

finite economy, with k students drawn independently according to η and the vector of

capacity per student Sk defined as Skk = [Sk]. Let {P k}k∈N be a sequence of random

variables, such that each P k is a market clearing cutoff of F k. Assume that E has a

C1 demand function, and that ∂D(P ∗) nonsingular. Then the asymptotic distribution

of the difference between P k and P ∗ satisfies

√
k · (P k − P ∗) d→ N (0, ∂D(P ∗)−1 · ΣD · (∂D(P ∗)−1)

′
),
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where N (·, ·) denotes a C-dimensional normal distribution with given mean and covari-

ance matrix. The matrix ΣD is equal to

ΣD =



S1(1− S1) −S1S2 · · · · · · −S1SC

−S2S1 S2(1− S2)
...

...
. . .

...
...

. . . −SC−1SC
−SCS1 · · · · · · −SCSC−1 SC(1− SC)


.

Before proving the proposition, we report the results of simulations testing the asymp-

totic approximation. We randomly generated discrete economies with the distribution

of preferences from the example in Section 2.3. For each market size we performed

10,000 simulations. For each simulation we calculated a cutoff P k corresponding to the

student-optimal stable matching.

Figure G1 displays the joint distribution of market clearing cutoffs across simulations.

As predicted, when the number of students increases, the distribution is increasingly

concentrated around the limit market clearing cutoffs. Moreover, convergence is fast.

For instance, with 50 students per college the distribution is already highly concentrated

around P ∗. Consistent with the simulations in Section 4.2, these results reinforce that

the continuum model is a good approximation in realistically sized markets with many

students per college.

To test the finer predictions of the asymptotic approximation, Figure G2 plots the

distribution of normalized market clearing cutoffs,
√
k(P k − P ∗). Proposition G1 pre-

dicts that this joint distribution converges to a normal distribution with zero mean and

covariance matrix given by

(12) ∂D(P ∗)−1 · ΣD · (∂D(P ∗)−1)
′ ≈

(
0.3665 −0.0000

−0.0000 0.3210

)
.

We find that, for as few as 10 students per college, the distributions are quite close,

with very similar means and covariance matrices. To illustrate this, the bottom panels

plot histograms of
√
k(P k

1 −P ∗1 ) in the simulations. The panels also plot the theoretical

normal distribution, predicted according to Proposition G1 and the covariance formula

in equation (12). The predicted distribution matches the actual histograms very closely.

We note that, although the means, covariances, and overall shapes of the actual and

theoretical distributions are quite close, the histograms clearly show deviations from

the normal distribution. For example, the histogram with 50 students per college

displays some skew, unlike the normal distribution. Therefore, for small values of k,

the asymptotic distribution has a good overall fit, but may fail to match higher moments

accurately.



SUPPLY AND DEMAND IN MATCHING MARKETS 37

We end this section with a proof of the proposition. The proof follows standard as-

ymptotic derivations in statistics, using a delta method argument. The only additional

difficulty is that the discrete excess demand curve z(·|ηk) is not differentiable. We cir-

cumvent this issue with Claim G1 below, which shows that it is possible to follow the

delta method argument by moving along the graph of z(·|η) instead of z(·|ηk).

Proof. We have that

z(P ∗|ηk) = −z(P k|η) + {z(P ∗|ηk) + z(P k|η)}
= −∂D(P ∗) · (P k − P ∗)

+o(‖P k − P ∗‖)
+{z(P ∗|ηk) + z(P k|η)}.

Multiplying by
√
k and taking the limit in distribution, the o(‖P k − P ∗‖) term in the

RHS vanishes, because it is insignificant compared to the first term. Likewise, the

third term in the RHS vanishes, by Claim (G1) stated below. Therefore, the equation

becomes √
k(P k − P ∗) + ∂D(P ∗)−1 · (

√
k · z(P ∗|ηk)) d→ 0.

The result then follows from the observation that D(P ∗|ηk) has a multinomial distribu-

tion with covariance matrix ΣD. By the central limit theorem we have that
√
k·z(P ∗|ηk)

is asymptotically normal with covariance matrix ΣD and 0 mean.

All that remains is to prove the following claim.

Claim G1. We have that

(13)
√
k · {z(P ∗|ηk) + z(P k|η)} d→ 0.

Proof. Define the function

∆k(P̄ ) = ‖{D(P̄ |ηk)−D(P ∗|ηk)} − {D(P̄ |η)−D(P ∗|η)}‖,

which for every P̄ and k outputs a random variable. Note that random variable equals

the norm of the difference between the realized and expected number of types in certain

sets, like empirical and actual distribution functions, so that we can use VC theory to

bound it uniformly. Define the ball

Bδ = {P̄ : ‖P̄ − P ∗‖ ≤ δ}.

Let the set of students who can potentially change their demand for cutoffs in this ball

equal

Mδ = {θ ∈ Θ : ∃P̄ ∈ Bδ and c such that P̄c = eθc}.
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Finally, define the random variableNk
δ equal to the number of these potentially marginal

students, that is

Nk
δ = ηk(Mδ) · k.

Part 1. We will show that, for any ε, δ > 0, the expression

F k(δ, ε) = Pr{ sup
P̄∈Bδ

∆k(P̄ ) ≥ k−1/2 · ε}

is bounded by

(14) F k(δ, ε) ≤ α · exp{−1

8
· ε2 · 1

η(Mδ) + k−1/4
}+ exp{−2 · k1/2}.

To see this, we will first bound the conditional probability

Pr{ sup
P̄∈Bδ

∆k(P̄ ) ≥ k−1/2 · ε|Nk
δ = n}.

Note that ∆(P̄ ) equals Nδ/k times the norm of the difference between the realized

empirical and ex ante distributions of students in a subset of Mδ, conditional on Nδ

agents being drawn within Mδ. Hence, by the Vapnik-Chervonenkis Theorem,13 there

exists a constant α such that

Pr{ sup
P̄∈Bδ

∆(P̄ ) ≥ k−1/2 · ε|Nk
δ = n} ≤ α · exp{−n

8
· (k−1/2 · ε)2 · (k

n
)2}(15)

= α · exp{−1

8
· ε2 · k

n
}.

To get an unconditional bound, note that, by Hoeffding’s inequality,

(16) Pr{N
k
δ

k
≥ η(Mδ) + k−1/4} ≤ exp{−2 · k−1/2 · k}.

Combining the bounds (15) and (16), we get the desired inequality (14).

Part 2. We will now use the bound from part 1 to complete the proof.

Note that, because D(P ∗|η) = D(P k|ηk) = 0, we have that

∆k(P k) = ‖{D(P ∗|ηk) +D(P k|η)}‖.

Using the definition of F k(δ, ε), we have that

Pr{
√
k · ‖{D(P ∗|ηk) +D(P k|η)}‖ ≥ ε} = Pr{

√
k ·∆k(P k) ≥ ε}

≤ F k(‖P k − P ∗‖, ε).

Note that, because P k converges almost surely to P ∗ and the strict preferences assump-

tion, we have that η(M‖Pk−P ∗‖) converges almost surely to 0. Using the bound 14, and

the fact that ε > 0 was taken arbitrarily, we have that the expression in the left-hand

side converges to 0 in probability. In particular, it converges to 0 in distribution. That

13See Theorem 12.5 in Devroye et al. (1996) p. 197 and the notes in the proof of Proposition 3.
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is, √
k · {D(P ∗|ηk) +D(P k|η)} d→ 0.

To establish the result, note that, because ‖Sk − S‖ ≤ 1/k, we have

‖{z(P ∗|ηk) + z(P k|η)} − {D(P ∗|ηk) +D(P k|η)}‖ ≤ 1/k.

This implies the desired result, equation (13). �

�
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Figure G1. Distribution of market clearing cutoffs P k

Notes: This picture reports realized market clearing cutoffs corresponding to the student-optimal stable matching in 10,000 discrete economies drawn
with the distribution of the example in Section 2.3. The top panels display a scatterplot of the joint distribution of market clearing cutoffs in 500
economies. The bottom panels display the histogram of the distribution of the cutoff of college 1, along with a best-fitting normal distribution. The
vertical axis in the bottom panels is in units of the count of the histogram bins, and the normal distributions were scaled accordingly.
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Figure G2. Normalized distribution of market clearing cutoffs
√
k(P k − P ∗)

Notes: This picture reports realized market clearing cutoffs corresponding to the student-optimal stable matching in 10,000 discrete economies drawn
with the distribution of the example in Section 2.3, normalized by

√
k(P k − P ∗). The top panels display a scatterplot of the joint distribution of

market clearing cutoffs in 2,000 economies. The bottom panels display the histogram of the distribution of the cutoff of college 1. The histogram,
which is calculated from the simulations, is overlaid with the normal distribution predicted by Proposition G1. The vertical axis in the bottom
panels is in units of the count of the histogram bins, and the normal distribution was scaled accordingly.
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