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A Proofs

A.1 Proof of Theorem 1

We first define notation that will be used in the proof of Theorem 1. Given µ̂ ∈ ∆T , let
Φn
i (ti|µ̂) denote the bundle Φn

i (ti, t−i), where t−i is an arbitrary vector of n − 1 types such
that emp[ti, t−i] = µ̂, if such t−i exists.1 If there is no such t−i, which is the case for example
if µ̂(ti) = 0, then Φn

i (ti|µ̂) is defined as the random bundle placing equal weight on all
outcomes in X0. Note that bundles Φn

i (ti|µ̂) which do not correspond to any t−i do not play
any role in the results. They are defined only to simplify the notation in the proof below.
Let Pr{µ̂|t′i, µ, n} be the probability that the empirical distribution of (t′i, t−i) is µ̂, given a
fixed t′i and that the vector t−i of n− 1 types is drawn i.i.d. according to µ. Throughout the
proof we consider sums over infinite sets, but where only a finite number of the summands
are nonzero. We adopt the convention that these are finite sums of only the positive terms.

Fix a prior µ ∈ ∆̄T , market size n, and consider the utility a type ti agent expects to
obtain if she reports t′i. This equals

uti [φ
n
i (t′i, µ)] =

∑
µ̂∈∆T

Pr{µ̂|t′i, µ, n} · uti [Φn
i (t′i|µ̂)].

The interim gain from misreporting as type t′i instead of type ti equals

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] (A.1)

=
∑
µ̂∈∆T

Pr{µ̂|t′i, µ, n} · uti [Φn
i (t′i|µ̂)]−

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · uti [Φn
i (ti|µ̂)].

1Recall that anonymity implies that, if t−i and t′−i have the same empirical distribution, then Φni (ti, t−i) =
Φni (ti, t

′
−i).
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We can reorder the terms on the RHS of (A.1) as

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · (uti [Φn
i (t′i|µ̂)]− uti [Φn

i (ti|µ̂)])︸ ︷︷ ︸
Envy = Gain from reporting t′i holding fixed µ̂

(A.2)

+
∑
µ̂∈∆T

(Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}) · uti [Φn
i (t′i|µ̂)]︸ ︷︷ ︸

Gain from affecting µ̂

.

That is, the gain from misreporting can be decomposed into two terms. The first term
is the expected gain, over all possible empirical distributions µ̂, of reporting t′i instead of
ti, holding fixed the empirical distribution of types. This quantity equals how much type ti
players envy type t′i players, in expectation. The second term is the sum, over all possible
empirical distributions µ̂, of how much changing the report from ti to t′i increases the like-
lihood of µ̂, times the utility of receiving the bundle given to a type t′i agent. That is, how
much player i gains by manipulating the expected empirical distribution of reports µ̂. Our
goal is to show that, if a mechanism is EF or EF-TB, then both of these terms are bounded
above in large markets.

The proof is based on two lemmas. The first lemma bounds the effect that a single player
can have on the probability distribution of the realized empirical distribution of types. This
will allow us to bound the second term in expression (A.2).

Lemma A.1. Define, given types ti and t′i, distribution of types µ ∈ ∆T , and market size
n, the function

∆P (ti, t
′
i, µ, n) =

∑
µ̂∈∆T

|Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}|. (A.3)

Then, for any µ ∈ ∆̄T , and ε > 0, there exists a constant C∆P > 0 such that, for any ti, t′i
and n we have

∆P (ti, t
′
i, µ, n) ≤ C∆P · n−1/2+ε.

The second lemma will help us bound the first term in expression (A.2). Note that this
term is always weakly negative for EF mechanisms, by definition, but that it can be positive
for EF-TB mechanisms. The lemma provides a bound on the maximum amount of envy in
an EF-TB mechanism, based on the minimum number of agents of a given type.
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Lemma A.2. Fix an EF-TB mechanism {(Φn)N, T}. Define, given types ti and t′i, empirical
distribution of types µ̂ ∈ ∆T , and market size n, the function

E(ti, t
′
i, µ̂, n) = uti [Φ

n
i (t′i|µ̂)]− uti [Φn

i (ti|µ̂)],

which measures the envy of ti for t′i. Then, for any ε > 0, there exists CE such that, for all
ti, t

′
i ∈ T , n, and µ̂ ∈ ∆̄T such that µ̂ corresponds to the empirical distribution of types for

some vector in T n, we have

E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{µ̂(τ) · n}−1/4+ε. (A.4)

The proofs of Lemmas A.1 and A.2 are given below. We now use the two lemmas to
prove Theorem 1

Proof of Theorem 1, Case 1: EF mechanisms. Applying the notation of Lemmas A.1 and
A.2 to the terms in equation (A.2), and recalling that utility is bounded above by 1, we
obtain the bound

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) (A.5)

+∆P (ti, t
′
i, µ, n).

If a mechanism is EF and µ̂(t′i) > 0, i.e., the empirical µ̂ has at least one report of t′i,
then the first term in the RHS of inequality (A.5) is nonpositive. Taking any ε > 0, and
using Lemma A.1 to bound the ∆P term in the RHS of inequality (A.5) we have that there
exists C∆P > 0 such that

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤ Pr{µ̂(t′i) = 0|ti, µ, n} (A.6)

+C∆P · n−1/2+ε.

Since the probability that µ̂(t′i) = 0 goes to 0 exponentially with n, we have the desired
result.

Proof of Theorem 1, Case 2: EF-TB mechanisms. We begin by bounding the envy term in
inequality (A.5), which is weakly negative for EF mechanisms but can be strictly positive in
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EF-TB mechanisms. We can, for any δ ≥ 0, decompose the envy term as

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) =

∑
µ̂:minτ µ̂(τ)≥µ(τ)−δ

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) (A.7)

+
∑

µ̂:minτ µ̂(τ)<µ(τ)−δ

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n).

By Lemma A.2, for any ε > 0 there exists a constant CE such that

∑
µ̂:minτ µ̂(τ)≥µ(τ)−δ

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{(µ(τ)− δ)n}−1/4+ε. (A.8)

To bound the second term in the RHS of A.7, begin by noting that µ̂(τ) · n equals the
number of agents who draw type τ . This number is the outcome of n − 1 i.i.d. draws of
agents different than i, plus 1 if ti = τ . Using Hoeffding’s inequality, for any τ , we can bound
the probability that the realized value of µ̂(τ) · n is much smaller than µ(τ) · n. We have
that, for any δ > 0, there exists a constant Cδ,µ > 0 such that2

Pr{µ̂(τ) · n < (µ(τ)− δ) · n|ti, µ, n} ≤ Cδ,µ · exp{−2δ2n}. (A.9)

Take now δ = minτ∈T µ(τ)/2. Applying the bounds (A.8) and (A.9) to inequality (A.7), we
have that

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{(µ(τ)− δ)n}−1/4+ε

+|T | · Cδ,µ · exp{−2δ2n}.

Multiplying n out of the first term in the RHS then yields

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{µ(τ)− δ}−1/4+ε · n−1/4+ε

+|T | · Cδ,µ · exp{−2δ2n}.

2Hoeffding’s inequality states that, given n i.i.d. binomial random variables with probability of success p,
and z > 0, the probability of having fewer than (p− z)n successes is bounded above by exp{−2z2n}. Note
that, in the bound below, ti is fixed, while the n− 1 coordinates of t−i are drawn i.i.d. according to µ. For
that reason, the Hoeffding bound must be modified to include a constant that depends on δ and µ, which
we denote Cδ,µ. The reason why a constant suffices is that, conditional on δ and µ, the bound taking into
account the n− 1 draws converges to 0 at the same rate as the bound considering n draws.
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Therefore, there exists a constant C ′ such that for all n, t′i, and ti,∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ C ′ · n−1/4+ε.

Return now to inequality (A.5). Using the bound we just derived and Lemma A.1, we
have that there exists a constant C∆P such that

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤ C ′ · n−1/4+ε

+C∆P · n−1/2+ε.

Therefore, there exists a constant C ′′ such that

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤ C ′′ · n−1/4+ε,

as desired.

A.1.1 Proof of the Lemmas

We now prove the lemmas. Throughout the proofs, we consider the case ε < 1/4, which
implies the results for ε ≥ 1/4.

Proof of Lemma A.1. To show that a single player cannot appreciably affect the distribution
of µ̂, we start by calculating the effect of changing i’s report on the probability of an individual
value of µ̂ being drawn. Consider any µ̂ that is the empirical distribution of some vector of
types with n agents.

Enumerate the elements of T as

T = {τ1, τ2, · · · τ|T |}.

Since µ̂ follows a multinomial distribution, for any ti ∈ T , the probability Pr{µ̂|ti, µ, n}
equals(

n− 1

nµ̂(τ1), · · · , nµ̂(ti)− 1, · · · , nµ̂(τ|T |)

)
· µ(τ1)nµ̂(τ1) · · ·µ(ti)

nµ̂(ti)−1 · · ·µ(τ|T |)
nµ̂(τ|T |),

where the term in parentheses is a multinomial coefficient. Note that the nµ̂(τ) terms in this
expression are integers, since this is the number of agents with a given type in a realization
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µ̂ of the distribution of types. Moreover, ti only enters the formula in one factorial term in
the denominator, and a power term in the numerator. With this observation, we have that

Pr{µ̂|t′i, µ, n}/Pr{µ̂|ti, µ, n} =
µ̂(t′i)

µ(t′i)
/
µ̂(ti)

µ(ti)
. (A.10)

For the rest of the proof, we will consider separately values of µ̂ which are close to µ, and
those that are very different from µ. We will show that player i can only have a small effect
on the probability of the former, while the latter occur with very small probability.

We derive bounds as functions of a variable δ. Initially, we derive bounds valid for any
δ > 0, and, later in the proof, we consider the case where δ is a particular function of n.
Define, for any δ > 0, the set Mδ of empirical distributions µ̂ that are sufficiently close to
the true distribution µ as

Mδ = {µ̂ ∈ ∆T : |µ̂(ti)− µ(ti)| < δ and |µ̂(t′i)− µ(t′i)| < δ}.

Note that, when µ̂(ti) = µ(ti) and µ̂(t′i) = µ(t′i), the ratio on the right of equation (A.10)
equals 1 and is continuously differentiable in µ̂(ti) and µ̂(t′i). Consequently, there exists a
constant C > 0, and δ̄ > 0 such that, for all δ ≤ δ̄, if µ̂ ∈Mδ then

| µ̂(t′i)

µ(t′i)
/
µ̂(ti)

µ(ti)
− 1| < Cδ. (A.11)

Moreover, we can bound the probability that the empirical distribution of types µ̂ is not in
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Mδ+ 1
n
. By Hoeffding’s inequality,3 for any δ > 0 and n,

Pr{µ̂ /∈Mδ+ 1
n
|ti, µ, n} ≤ 4 · exp(−2(n− 1)δ2) (A.12)

Pr{µ̂ /∈Mδ+ 1
n
|t′i, µ, n} ≤ 4 · exp(−2(n− 1)δ2).

We are now ready to bound ∆P . We can decompose the sum in equation (A.3) into the
terms where µ̂ is within or outside Mδ+ 1

n
. We then have

∆P =
∑

µ̂∈M
δ+ 1

n

|Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}|

+
∑

µ̂/∈M
δ+ 1

n

|Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}|.

Rearranging the first term, and using the triangle inequality in the second term we have

∆P ≤
∑

µ̂∈M
δ+ 1

n

|Pr{µ̂|t′i, µ, n}/Pr{µ̂|ti, µ, n} − 1| · Pr{µ̂|ti, µ, n}

+
∑

µ̂/∈M
δ+ 1

n

(Pr{µ̂|t′i, µ, n}+ Pr{µ̂|ti, µ, n}).

3Hoeffding’s inequality yields

Pr{|µ̂(ti)−
n− 1

n
µ(ti)−

1

n
| > δ|ti, µ, n} < 2 exp{−2(n− 1)δ2}.

Moreover,

|µ̂(ti)− µ(ti)| = |µ̂(ti)−
n− 1

n
µ(ti)−

1

n
+

1

n
(1− µ(ti))|

≤ |µ̂(ti)−
n− 1

n
µ(ti)−

1

n
|+ 1

n
|1− µ(ti)|.

Hence,

Pr{|µ̂(ti)− µ(ti)| > δ +
1

n
|ti, µ, n} < 2 exp{−2(n− 1)δ2}.

By a similar argument,

Pr{|µ̂(t′i)− µ(t′i)| > δ +
1

n
|ti, µ, n} < 2 exp{−2(n− 1)δ2}.

Adding these two bounds implies the bound (A.12) when player i plays ti, and the case where player i plays
t′i is analogous.
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If we substitute equation (A.10) in the first term we obtain

∆P ≤
∑

µ̂∈M
δ+ 1

n

| µ̂(t′i)

µ(t′i)
/
µ̂(ti)

µ(ti)
− 1| · Pr{µ̂|ti, µ, n}

+
∑

µ̂/∈M
δ+ 1

n

(Pr{µ̂|t′i, µ, n}+ Pr{µ̂|ti, µ, n}).

We can bound the first sum using the fact that the ratio being summed is small for
µ̂ ∈ Mδ+ 1

n
, and bound the second sum since the total probability that µ̂ /∈ Mδ+ 1

n
is small.

Formally, using equations (A.11) and (A.12) we have that, for all n and δ with δ + 1
n
≤ δ̄,

∆P ≤ C(δ +
1

n
) + 8 · exp(−2(n− 1)δ2).

To complete the proof we will substitute δ by an appropriate function of n. Note that the
first term is increasing in δ, while the second term is decreasing in δ. In particular, for the
second term to converge to 0, asymptotically δ has to be greater than n−1/2. If we take
δ = n−1/2+ε, we obtain the bound

∆P ≤ C(n−1/2+ε + n−1) + 8 · exp(−2n2εn− 1

n
), (A.13)

for all n large enough such that δ+ 1
n

= n−1/2+ε+n−1 ≤ δ̄. Therefore, we can take a constant
C ′ such that

∆P ≤ C ′ · (n−1/2+ε + exp(−2n2εn− 1

n
)) (A.14)

for all n.
Asymptotically, the first term in the RHS of (A.14) dominates the second term.4 There-

fore, we can find a constant C∆P such that

∆P ≤ C∆P · n−1/2+ε,

completing the proof.

We now prove Lemma A.2. The result would follow immediately if we restricted attention
to mechanisms that are EF. The difficulty in establishing the result is that mechanisms that

4To see this, note that the logarithm of n−1/2+ε is −(1/2+ε) log n, while the logarithm of exp(−2n2ε n−1n )
equals −2n2ε n−1n . Since n2ε n−1n is asymptotically much larger than log n, we have that the second term in
equation (A.13) is asymptotically much smaller than the first.
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Figure A.1: A scatter plot of the lottery numbers li′ of different agents i′ on the horizontal
axis, and the utility uti [xni′(t, l)] of type ti agents from the bundles i′ receives in the vertical
axis. Balls represent agents with ti′ = ti, and triangles agents with ti′ = tj. The values are
consistent with EF-TB, as the utilities of type ti agents are always above the utilities from
bundles of any agent with lower lottery number.

are EF-TB but not EF can have large amounts of envy ex-post, i.e., uti [Φn
j (t)] − uti [Φn

i (t)]

can be large. To see why this can be the case, fix two players i and j and consider Figure
A.1. The figure plots, for several players i′ whose types are either ti′ = ti or ti′ = tj, lottery
numbers li′ in the horizontal axis and the utility of a type ti for the bundle i′ receives in the
vertical axis. Players with ti′ = ti are plotted as balls, and players with ti′ = tj as triangles.
Note that the figure is consistent with EF-TB. In particular, if lj ≤ li, then player i prefers
his own bundle to player j’s bundle. However, if player j received a higher lottery number,
lj > li, it is perfectly consistent with EF-TB that player i prefers player j’s bundle. That is,
a player corresponding to a ball may envy a player corresponding to a triangle in the picture,
as long as the triangle player has a higher lottery number. In fact, player i can envy player
j by a large amount, so EF-TB mechanisms can have a lot of envy ex-post.

Figure A.1 also suggests a way to prove the lemma, despite this difficulty. The proof
exploits two basic insights. First, note that the curve formed by the balls – the utility player
i derives from the bundles assigned to the type ti players – is always above the curve formed
by the triangles – the utility player i derives from the bundles assigned to the type tj players.
Hence, for type ti agents to, on average, have a large amount of ex-post envy of type tj agents,
the lottery outcome must be very uneven, favoring type tj players over type ti players. We
can bound this average ex-post envy as a function of how well distributed lottery numbers
are (see Claim A.1). Second, due to symmetry, how much player i envies player j ex-ante
(i.e., before the lottery) equals how much player i prefers the bundles received by type tj
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players over the bundles received by type ti players, averaging over all type ti and tj players,
and all possible lottery draws. Since lottery draws are likely to be very evenly distributed
in a large market, it follows that player i’s envy with respect to player j, before the lottery
draw, is small (see Claim A.2). We now formalize these ideas.

Proof of Lemma A.2. The proof of the lemma has three steps. The first step bounds how
much players of a given type envy players of another type, on average, conditional on a
vector of reports t and lottery draw l, as a function of how evenly distributed the lottery
numbers are. The second step bounds envy between two players, conditional on a vector of
reports t, but before the lottery is drawn. Finally, the third step uses these bounds to prove
the result.

Step 1. Bounding average envy after a lottery draw.

We begin by defining a measure of how evenly distributed a vector of lottery numbers is.
Fix a market size n, vector of types t ∈ T n, vector of lottery draws l and players i and j.
Partition the set of players in groups according to where their lottery number falls among
K uniformly-spaced intervals L1 = [0, 1/K), L2 = [1/K, 2/K), · · · , LK = [(K − 1)/K, 1].
Denote the set of all type ti′ players by

I(i′|t) = {i′′ : ti′′ = ti′},

and denote the set of type ti′ players with lottery numbers in Lk by

Ik(i
′|t, l) = {i′′ ∈ I(i′|t) : li′′ ∈ Lk}.

When there is no risk of confusion, these sets will be denoted by I(i′) and Ik(i′), respec-
tively. The number of elements in a set of players I(i′) is denoted by |I(i′)|.

Given the lottery draw l, we choose the number of partitions K(l, t, i, j) such that the
type ti and type tj players’ lottery numbers are not too unevenly distributed over the Lk sets.
Specifically, let K(l, t, i, j) be the largest integer K such that, for i′ = i, j, and k = 1, · · · , K,
we have

| |Ik(i
′|t, l)|

|I(i′|t)|
− 1

K
| < 1

K2
. (A.15)

Such an integer necessarily exists, as K = 1 satisfies this condition. Intuitively, the larger is
K(l, t, i, j), the more evenly distributed the lottery numbers l are. When there is no risk of
confusion, we write K(l) or K for K(l, t, i, j).

The following claim bounds the average envy of type ti players towards type tj players,
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after a lottery draw, as a function of K(l, t, i, j).

Claim A.1. Fix a market size n, vector of types t ∈ T n, lottery draws l ∈ [0, 1]n, and players
i and j. Then the average envy of type ti players towards type tj players is bounded by

∑
j′∈I(j)

uti [x
n
j′(t, l)]

|I(j|t)|
−
∑
i′∈I(i)

uti [x
n
i′(t, l)]

|I(i|t)|
≤ 3

K(l, t, i, j)
. (A.16)

Proof. Denote the minimum utility received by a player with type ti and lottery number in
Lk as

vk(l) = min{uti [xni′(t, l)] : i′ ∈ Ik(i)}.

Define vK(l)+1(l) = 1. Although vk(l) and K(l) depend on l, we will omit this dependence
when there is no risk of confusion. Note that, by the EF-TB condition, for all j′ ∈ Ik(j),

uti [x
n
j′(t, l)] ≤ vk+1. (A.17)

Moreover, for all i′ ∈ Ik+1(i),
vk+1 ≤ uti [x

n
i′(t, l)]. (A.18)

We now bound the average utility a type ti agent derives from the bundles received by
all players with type tj as follows.

∑
j′∈I(j)

uti [x
n
j′(t, l)]

|I(j)|
(A.19)

=
K∑
k=1

∑
j′∈Ik(j)

|Ik(j)|
|I(j)|

·
uti [x

n
j′(t, l)]

|Ik(j)|

≤
K∑
k=1

|Ik(j)|
|I(j)|

· vk+1.

The second line follows from breaking the sum over the K sets Ik(j), and the third line
follows from inequality (A.17). We now use the fact that K was chosen such that both
|Ik(i)|/|I(i)| and |Ik(j)|/|I(j)| are approximately equal to 1/K. Using condition (A.15) we
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can bound the expression above as

K∑
k=1

|Ik(j)|
|I(j)|

· vk+1 =
K∑
k=2

|Ik(i)|
|I(i)|

· vk +
K∑
k=2

[
|Ik−1(j)|
|I(j)|

− |Ik(i)|
|I(i)|

] · vk +
|IK(j)|
|I(j)|

· vK+1

≤
K∑
k=2

|Ik(i)|
|I(i)|

· vk + (K − 1)
2

K2
+ (

1

K
+

1

K2
)

≤
K∑
k=2

|Ik(i)|
|I(i)|

· vk +
3

K
.

The equation in the first line follows from rearranging the sum. The second line follows
from vk ≤ 1, and from the fact that the fractions Ik(i)/I(i) and Ik(j)/I(j) are in the interval
[ 1
K
− 1

K2 ,
1
K

+ 1
K2 ] as per inequality (A.15). The inequality in the third line follows from

summing the second and third terms of the RHS of the second line.

We now bound the RHS of this expression using the fact that type ti agents in the interval
Ik(i) receive utility of at least vk. Using inequality (A.18) we have

K∑
k=2

|Ik(i)|
|I(i)|

· vk +
3

K

≤
K∑
k=2

∑
i′∈Ik(i)

|Ik(i)|
|I(i)|

· uti [x
n
i′(t, l)]

|Ik(i)|
+

3

K

≤
K∑
k=1

∑
i′∈Ik(i)

|Ik(i)|
|I(i)|

· uti [x
n
i′(t, l)]

|Ik(i)|
+

3

K
.

The first inequality follows from vk being lower than the utility of any player in Ik(i), and
the second inequality follows because the latter sum equals the first plus the k = 1 term.
Since we started from inequality (A.19), the bound (A.16) follows, completing the proof.

Step 2: Bounding envy before the lottery draw.

We now bound the envy between two players i and j given a profile of types t, before the
lottery is drawn.

Claim A.2. Given ε > 0, there exists a constant CE > 0 such that, for any t ∈ T n and
i, j ≤ n, player i’s envy with respect to player j is bounded by

uti [Φ
n
j (t)]− uti [Φn

i (t)] ≤ CE · min
i′=i,j
{|I(i|t)|}−1/4+ε (A.20)
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Proof. Given a vector of types t and a player i′, using anonymity, we can write the expected
bundle Φn

i′(t) received by player i′ as the expected bundle received by all players with the
same type, over all realizations of l:

Φn
i′(t) =

∫
l∈[0,1]n

∑
i′′∈I(i′)

xni′′(t, l)

|I(i′)|
dl. (A.21)

Hence, player i’s envy of player j can be written as:

uti [Φ
n
j (t)]− uti [Φn

i (t)] =

∫
l∈[0,1]n

∑
j′∈I(j)

uti [x
n
j′(t, l)]

|I(j|t)|
−
∑
i′∈I(i)

uti [x
n
i′(t, l)]

|I(i|t)|
dl.

Claim A.1 then implies that envy is bounded by

uti [Φ
n
j (t)]− uti [Φn

i (t)] ≤
∫
l∈[0,1]n

3

K(l, t, i, j)
dl. (A.22)

We need to show that, on average over all lottery realizations, K(l) is large enough such
that the integral above is small. Given a lottery draw l denote by F̂i′(x|l) the fraction of
agents in I(i′) with lottery number no greater than x. Formally,

F̂i′(x|l) = |{i′′ ∈ I(i′) : li′′ ≤ x}|/|I(i′)|.

That is, F̂i′ is the empirical distribution function of the lottery draws of type ti′ agents. Since
the lottery numbers are i.i.d., we know that the F̂i′(x|l) functions are very likely to be close
to the actual distribution of lottery draws F (x) = x. By the Dvoretzky–Kiefer–Wolfowitz
inequality, for any δ > 0,

Pr{sup
x
|F̂i′(x|l)− x| > δ} ≤ 2 exp(−2|I(i′)|δ2). (A.23)

Fixing a partition size K, the conditions in (A.15) for the number of agents in each
interval to be close to 1/K can be written as

|[F̂i′(
k

K
|l)− F̂i′(

k − 1

K
|l)]− 1

K
| ≤ 1

K2
,

for k = 1, . . . , K and i′ = i, j. Applying the inequality (A.23), using δ = 1/2K2, we have
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that the probability that each such condition is violated is bounded by

Pr{||Ik(i
′)|

|I(i′)|
− 1

K
| > 1

K2
} ≤ 2 · exp(−|I(i′)|/2K4).

Consider now an arbitrary integer K̄ > 0. Note that the probability that K(l) ≥ K̄ is at
least as large as the probability that K = K̄ satisfies all of the conditions (A.15), since K(l)

by construction is the largest integer that satisfies these conditions. Therefore,

Pr{K(l) < K̄} ≤ 2K̄[exp(−|I(i)|/2K̄4) + exp(−|I(j)|/2K̄4)]

≤ 4K̄ exp(−min
i′=i,j
{|I(i′)|}/2K̄4).

Using this, we can bound the integral in the right side of equation (A.22). Note that the
integrand 3/K(l) is decreasing in K(l), and attains its maximum value of 3 when K(l) = 1.
Therefore, the integral in equation (A.22) can be bounded by∫

l∈[0,1]n

3

K(l, t, i, j)
dl ≤ 3

K̄
+ 3 Pr{K(l) < K̄}

≤ 3

K̄
+ 12K̄ exp(−min

i′=i,j
{|I(i′)|}/2K̄4),

Note that the first term on the RHS is decreasing in K̄, while the second term is increasing
in K̄. Taking K̄ = bmini′=i,j |I(i′)|1/4−εc, we have that this last expression is bounded by

3/ min
i′=i,j
b{|I(i′)|}1/4−εc

+12 min
i′=i,j
{|I(i′)|}1/4−ε exp{−min

i′=i,j
{|I(i′)|}4ε/2}.

Note that, as mini′=i,j{|I(i′)|} grows, the second term is asymptotically negligible com-
pared to the first term.5 Therefore, there exists a constant CE such that equation (A.20)
holds, proving the claim.

5This can be shown formally by taking logs of both terms. The log of the first term equals approximately

log 3− (
1

4
− ε) log min

i′=i,j
{|I(i′)|},

while the log of the second term equals

log 12 + (
1

4
− ε) log min

i′=i,j
{|I(i′)|} − min

i′=i,j
{|I(i′)|}4ε/2.

As mini′=i,j{|I(i′)|} grows, the difference between the second term and the first term goes to −∞, because
mini′=i,j{|I(i′)|}4ε grows much more quickly than log mini′=i,j{|I(i′)|}.
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Step 3: Completing the proof.

The lemma now follows from Claim A.2. Take ε > 0, and consider a constant CE as in
the statement of Claim A.2. Consider ti, t′i, µ̂, and n as in the statement of the lemma.
Recall that, since µ̂ ∈ ∆̄T , we have µ̂(τ) > 0 for all τ ∈ T . Additionally, since µ̂ equals the
empirical distribution of some vector of types, there exists t−i and j such that µ̂ = emp[t]

and tj = t′i. Therefore, we have

E(ti, t
′
i, µ̂, n) = uti [Φ

n
i (t′i|µ̂)]− uti [Φn

i (ti|µ̂)]

= uti [Φ
n
j (t)]− uti [Φn

i (t)]

≤ CE · min
i′=i,j
{|I(i|t)|}−1/4+ε

≤ CE ·min
τ∈T
{µ̂(τ) · n}−1/4+ε.

The first equation is the definition of E(ti, t
′
i, µ̂, n). The equation in the second line follows

from the way we defined t. The inequality in the third line follows from Claim A.2. The
final inequality follows because mini′=i,j{|I(i|t)|} is weakly greater than minτ∈T{µ̂(τ) · n}.

A.1.2 Infinite Set of Bundles

We close this Section by highlighting that the assumption of a finite set of bundles X0 is not
necessary for Theorem 1.

Remark 1. For the proof of Theorem 1 and Lemmas A.1 and A.2, we do not have to assume
X0 finite. The proofs follow verbatim with the following assumptions. X0 is a measurable
subset of Euclidean space. Agents’ utility functions over X0 are measurable and have range
[−∞, 1]. The utility of reporting truthfully is at least 0. That is, for all n and t ∈ T n,

uti [Φ
n
i (t)] ≥ 0.

The theorem holds with otherwise arbitrary X0 satisfying these assumptions. The added
generality is important for classifying the Walrasian mechanism in Appendix D.1.4.
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A.2 Proof of Theorem 2

Because (F n)n∈N is limit Bayes-Nash implementable, there exists a mechanism ((Φn)n∈N, A)

with a limit Bayes Nash equilibrium σ∗ such that

F n(ω) = Φn(σ∗(ω))

for all n and vectors of n types ω in Ω∗n. Define the direct mechanism ((Ψn)n∈N, T ) by

Ψn(t) = Φn(σ∗((t1, emp[t]), . . . , (tn, emp[t]))).

Denote by ψn(ti, µ) the bundle a participant who reports ti expects to receive from Ψn if the
other participants report i.i.d. according to µ.

Part 1: ((Ψn)n∈N, T ) approximately implements (F n)n∈N.

We must prove that, given ti in T , µ in ∆̄T , and ε > 0, there exists n0 such that, for all
n ≥ n0

‖fn(ti, µ)− ψn(ti, µ)‖ < ε. (A.24)

By the definition of fn(ti, µ) we have

fn(ti, µ) =
∑

t−i∈Tn−1

Pr{t−i|t−i ∼ iid(µ)} · F n
i ((t1, µ), . . . , (tn, µ)).

Likewise, by the definition of ψn(ti, µ) we have

ψn(ti, µ) =
∑

t−i∈Tn−1

Pr{t−i|t−i ∼ iid(µ)} · Φn(σ∗((t1, emp[t]), . . . , (tn, emp[t])))

=
∑

t−i∈Tn−1

Pr{t−i|t−i ∼ iid(µ)} · F n((t1, emp[t]), . . . , (tn, emp[t])).

Therefore, by the triangle inequality,

‖fn(ti, µ)− ψn(ti, µ)‖ ≤
∑

t−i∈Tn−1

Pr{t−i|t−i ∼ iid(µ)} ·∆(t−i), (A.25)

where
∆(t−i) = ‖F n

i ((t1, µ), . . . , (tn, µ))− F n
i ((t1, emp[t]), . . . , (tn, emp[t]))‖.

Moreover, because the social choice function (F n)n∈N is continuous, there exists a neigh-
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borhood N of µ and n0 in N such that, for any t−i with emp[t] ∈ N and n ≥ n0,

∆(t−i) < ε/2.

By the law of large numbers, we can take n0 to be large enough so that the probability that
emp[t] /∈ N is lower than ε/2.

We can decompose the difference in inequality (A.25) as

‖fn(ti, µ)− ψn(ti, µ)‖ ≤
∑

t−i:emp[t]∈N

Pr{t−i|t−i ∼ iid(µ)} ·∆(t−i)

+
∑

t−i:emp[t]/∈N

Pr{t−i|t−i ∼ iid(µ)} ·∆(t−i).

Each of the terms on the right hand side is bounded above by ε/2, which establishes inequality
(A.24).

Part 2: ((Φn)n∈N, T ) is SP-L.

We must show that, for any ti and t′i in T , µ in ∆̄T , and ε > 0, there exists n0 such that,
for all n ≥ n0,

uti [ψ
n(t′i, µ)]− uti [ψn(ti, µ)] ≤ ε. (A.26)

From the triangle inequality we have that

uti [ψ
n(t′i, µ)]− uti [ψn(ti, µ)] ≤uti [fn(t′i, µ)]− uti [fn(ti, µ)]

+ ‖fn(t′i, µ)− ψn(t′i, µ)‖

+ ‖fn(ti, µ)− ψn(ti, µ)‖.

By the definition of fn and the fact that σ∗ is a limit Bayes-Nash equilibrium, there exists
n0 such that, for n ≥ n0, the first term in the right-hand side is bounded above by ε/3.
Moreover, by step 1 of this proof, we can take n0 such that the second and third terms are
bounded above by ε/3. This implies inequality (A.26).
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