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B Clarifying Example: Multi-Unit Auctions

This section illustrates several of the key definitions in the paper using the example of multi-
unit auctions for identical objects, such as government bond auctions. We will see that the
uniform-price auction is SP-L whereas the pay-as-bid auction is manipulable in the large.
The example also illustrates the large-market limit, the role of the full-support requirement,
and the contrast between SP-L and the traditional notion of approximate strategy-proofness
based on ex-post realizations of others’ play.

Example B.1. (Multi-Unit Auctions). There are kn units of a homogeneous good. To
simplify notation, we assume that agents assign a constant per-unit value to the good, up to
a capacity limit. Specifically, each agent i’s type ti = (vi, qi) consists of a per-unit value vi
and a maximum capacity qi. The set of possible values is V = {1, . . . , v̄}, the set of possible
capacity limits is Q = {0, 1, . . . , q̄} with 1 < k < q̄, and T = V × Q. The set of outcomes
is X0 = ({1, 2, · · · , v̄}× {1, 2, · · · , q̄})∪ {0}, with an outcome consisting either of a per-unit
payment and an allotted quantity, or 0 to denote that the agent receives no units and makes
no payment.

We first describe the uniform-price auction. Bids consist of a per-unit value and a max-
imum capacity, so the action set A = T . Given a vector of n bidders’ reports t, denote the
demand for the object at a price of p as D(p; t) =

∑n
i=1 qi · 1{vi ≥ p}, where 1{·} is the

indicator function. The market-clearing price p∗(t) is the highest price at which demand
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exceeds supply. That is,

p∗(t) = max

{
p ∈ V :

D(p; t)

n
≥ k

}
(B.1)

if D(1, t) ≥ k and p∗(t) = 0 otherwise. The uniform-price auction allocates each bidder i
her demanded quantity at p∗(t), with the exception that bids with vi = p∗(t) are rationed
with equal probability. Formally, Φn

i (t) allots each bidder the following number of units of
the good,

Reported Value Expected Number of Units
vi < p∗(t) 0

vi = p∗(t) r̄ · qi
vi > p∗(t) qi

at a price per unit of p∗(t), and the rationing probability r̄ set so that the market clears.1

We now analyze the large-market limit of the uniform-price auction. Let ρ∗(m) denote
the price that clears supply and average demand given bid distribution m. That is,

ρ∗(m) = max{p ∈ V : E[D(p; ti)|ti ∼ m] ≥ k} (B.2)

if E[D(1; ti)|ti ∼ m] ≥ k and 0 otherwise.

Generically, expected demand at price ρ∗(m) strictly exceeds supply, that is,

E[D(ρ∗(m); ti)|ti ∼ m] > k.

In this generic case, as the market grows large, the realized price as defined in (B.1) will be
equal to ρ∗(m) with probability converging to one. Therefore, the limit mechanism allocates
each bidder their demand at ρ∗(m), again with the exception that bidders with value exactly
equal to ρ∗(m) are rationed, and with all winning bidders paying ρ∗(m) per unit. Formally,

1Since preferences are linear up to the capacity limit, the exact form of the rationing is immaterial in the
analysis below. The rationing constant is

r̄ =
kn−D(p∗(t) + 1; t)

D(p∗(t); t)−D(p∗(t) + 1; t)
.
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φ∞(ti,m) gives player i

Reported Value Expected Number of Units
vi < ρ∗(m) 0

vi = ρ∗(m) r̄ · qi
vi > ρ∗(m) qi

at a per unit price of ρ∗(m), and the rationing probability r̄ is set so that the market clears
on average.2 Note that, in this generic case, the price in the limit is deterministic and is
exogenous from the perspective of each individual bidder.

In addition to the generic case, there is a knife-edge case in which expected demand at
ρ∗(m) is exactly equal to supply. That is, E[D(ρ∗(m); ti)|ti ∼ m] = k and ρ∗(m) > 0. In
this case, focusing for now on m with full support, the price is stochastic even in the large-
market limit. Given large n, the realized per-capita demand at price ρ∗(m) will be weakly
greater than per-capita supply k with probability of about 1

2
, and will be strictly smaller

than per-capita supply k with probability of about 1
2
.3 Therefore, the price in the limit will

be ρ∗(m) with probability of 1
2
, and ρ∗(m) − 1 with probability of 1

2
. φ∞(ti,m) assigns to

player i the following expected number of units,

Reported Value Expected Number of Units
vi < ρ∗(m) 0

vi ≥ ρ∗(m) qi

and prices are ρ∗(m) or ρ∗(m) − 1 with equal probability. Note that bids of ρ∗(m) are not
rationed in the limit. This is so because, in this knife-edge case, average demand is exactly
equal to average supply. Moreover, in both cases the price in the limit is exogenous from
the perspective of each individual bidder. Even though the price is sometimes ρ∗(m) and
sometimes ρ∗(m) − 1, the probability that bidder i is pivotal in determining which of the
two prices occurs converges to zero.

The argument that the uniform-price auction is SP-L is now straightforward. Choose

2That is, r̄ satisfies

r̄ =
k − E[D(ρ∗(m) + 1; t′i)|t′i ∼ m]

E[D(ρ∗(m); t′i)|t′i ∼ m]− E[D(ρ∗(m) + 1; t′i)|t′i ∼ m]
.

3The intuition is that if a fair coin is tossed n→∞ times, the probability that at least n/2 of the tosses
are heads converges to 1/2, just as the probability that less than n/2 of the tosses are heads converges to
1/2, with both probabilities independent of the outcome of the ith toss.
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any type ti and any full support distribution m ∈ ∆̄T . The description of φ∞ above implies
that truthful reporting is a dominant strategy in the limit, hence Definition 4 is satisfied.

Last, we turn to the pay-as-bid auction. The pay-as-bid auction allocates units of the
good in exactly the same way as the uniform-price auction. The difference is that winning
bidders pay their bid instead of the market-clearing price p∗(t). Clearly, bidders will gain
from misreporting their value, even in the large-market limit. If the distribution of opponent
bids is m and the limit price is ρ∗(m), then a bidder of type ti = (vi, qi) with vi > ρ∗(m) + 1

strictly prefers to misreport as t′i = (ρ∗(m) + 1, qi): he receives the same allocation in the
limit but pays a strictly lower price per unit. Hence, the pay-as-bid auction is not SP-L.�

Discussion: SP-L vs. Traditional Approximate SP Observe that the argument that
the uniform price auction is SP-L would not go through using a stronger notion of asymp-
totic strategy-proofness based on realizations of opponents’ reports rather than probability
distributions. To see this, consider the case where there are k = 2 objects per bidder, and
bidder i knows that all other bidders will report a demand of 2 objects for $100. That is,
that all other bidders report a type of (2, $100) for sure. Then bidder i knows that she is
marginal, and can reduce the market-clearing price to 0 by asking for 1 object instead of 2.
This example illustrates the importance of the interim perspective in the definition of SP-L,
and why SP-L classifies mechanisms in a substantially different way than the traditional
ex-post notion of approximate strategy-proofness.

Discussion: Full Support Requirement The uniform-price auction example also illus-
trates the importance of the full-support requirement in the SP-L definition. If a bidder be-
lieves that opponent reports equal (2, $100) for sure, then she could lower the market-clearing
price from $100 to $0 by demanding a single unit. While this example uses a degenerate
distribution with support on a single type, there are non-degenerate distributions where a
bidder can manipulate the uniform-price auction.4 For example, if bidder i believes that
opponents report (2, $100) or (2, $200) with equal probability, then she can still, with high
probability, drive the prices down from $100 to $0 by asking for one unit instead of two.
Even though she is uncertain about other players’ types, this uncertainty is at a part of the
demand curve that is not relevant for the determination of the market-clearing price. That
said, such manipulations do not seem very realistic because they require extremely detailed
information about opponent play. The full support requirement in the SP-L definition is a

4See also Swinkels (2001; Section 5) for an elegant example, with limited support, in which bidders remain
pivotal with probability one even in very large markets.
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simple way to capture the idea that agents are not likely to have that level of information.
The uniform-price auction example also suggests that, on a case by case basis, it may not

always be necessary to assume full support. As long as there is uncertainty about opponents’
play in a region that is relevant for price determination, bidding truthfully will be optimal
in a large enough market. For example, assume that bidder i believes that her opponents
report (4, $100) or (4, $25) with 50% chance each. Then, in the limit, the market-clearing
price is $100 or $25 with 50% chance each, and bidder i cannot meaningfully affect the price.
Thus, even in this adversarial case where supply intersects the expected demand curve at
a discontinuity, and bidder i thinks that the distribution of opponents’ reports has only
two elements in its support, reporting truthfully is approximately optimal from the interim
perspective.

C Semi-Anonymity

Our main analysis considers anonymous mechanisms, where agents’ outcomes depend on
their own report and the distribution of all reports. The analysis generalizes straightfor-
wardly, though at some notational burden, to the case of semi-anonymous mechanisms, as
defined by Kalai (2004). In this setting, agents are divided into a number of groups, and
agents within each group can be treated differently by the mechanism.

In this section, agents belong to groups g in a finite set G. The set of types is partitioned
into subsets

T = Tg1 ∪ Tg2 ∪ · · · ∪ TgG .

A semi-anonymous mechanism is defined as {(Φn)n∈N, (Ag)g∈G}, where the Ag are the
sets of actions available to each group g, and

A = Ag1 ∪ · · · ∪ AgG

is the set of actions. As in the anonymous case, the Φn are functions

Φn : An → ∆(X0
n).

The difference with respect to anonymous mechanisms is that agents in group g are
restricted to play strategies in Ag. That is, if ti ∈ Tg then the support of any strategy σ(ti)

is contained in Ag. In a matching setting, for example, the groups may specify whether an
agent is a man or a woman, and the agent’s traits. Agents are then permitted to misreport
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their preferences over other match partners, but they cannot misrepresent their gender or
their traits. Limit mechanisms are defined as in Section 3.1. In particular, we define limit
mechanisms with respect to a single distribution µ ∈ ∆T , and not distributions of types
within groups. Alternatively, one could assume that the number of agents in each group
grows in a specific way, and that types are drawn i.i.d. within each group. We now formally
define a two-sided matching mechanism, to clarify the definition.

Example C.1. (Two-Sided Matching) This example shows that semi-anonymous mecha-
nisms include matching mechanisms in two-sided markets (Gale and Shapley, 1962). Agents
are men and women, who differ on a set of traits. Groups g index both sex and the traits,
so that the set of groups is

G = {m1,m2, · · · ,mM} ∪ {w1, w2, · · · , wW}.

That is, there are M groups of men and W groups of women. Men and women within each
group have the same traits, and are equally good marriage partners. However, within each
group, agents may differ in their preferences over the other groups. The way in which the
semi-anonymous framework differs from the anonymous setting is that men and women may
misreport their preferences, but cannot misreport their sex nor traits.

Formally, agent i’s type is
ti = (gti , uti),

where gti ∈ G is the agent’s group, and uti is a strictly positive utility function over the
groups of the opposite sex. The set of outcomes X0 = G ∪ ∅. That is, each agent only cares
about which type of man (woman) she (he) is matched to, or whether she (he) is unmatched.
Utilities of each type ti are given by uti(g) if she is matched to someone of the opposite sex.
We extend uti so that it is 0 if the agent is unmatched or matched to a group of the same
sex.

Consider now a stable matching mechanism, using a tie-breaking lottery, as in school
choice mechanisms (Abdulkadiroğlu et al., 2009). The mechanism is direct, so that Ag = Tg

for each g ∈ G. Men and women report a vector of types t, and therefore traits. This implies
a weak preference ordering of each man over each woman and vice versa. The mechanism
assigns a lottery number li to each agent, uniformly and independently distributed between
0 and 1. Lottery numbers are used to break ties between preferences. That is, preferences
are refined to strict preferences, by using the lottery numbers to break ties. Conditional
on a vector of lotteries l and a vector of reported types t, the mechanism implements a
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stable matching xn(t, l). The function xn(t, l) is taken to be symmetric, to conform to the
semi-anonymity assumption. The mechanism is then defined as

Φn(t) =

∫
l∈[0,1]n

xn(t, l) dl.

Define a semi-anonymous mechanism as SP-L if no agent wants to misreport as a different
type within the same group.

Definition C.1. The direct, semi-anonymous, mechanism {(Φn)N, T} is strategy-proof in

the large (SP-L) if, for any m ∈ ∆̄T and ε > 0 there exists n0 such that, for all n ≥ n0,
g ∈ G, and all ti, t′i ∈ Tg,

uti [φ
n(ti,m)] ≥ uti [φ

n(t′i,m)]− ε.

If the mechanism has a limit, this is equivalent to, for any m ∈ ∆̄T , g ∈ G, and all ti, t′i ∈ Tg,

uti [φ
∞(ti,m)] ≥ uti [φ

∞(t′i,m)].

Otherwise, the mechanism is manipulable in the large.

The sufficient conditions for a mechanism to be SP-L also have straightforward extensions.
The extension of the EF-TB condition is that no agent envies another agent in the same
group, and with lower lottery number.

Definition C.2. A direct semi-anonymous mechanism {(Φn)N, (Tg)g∈G} is envy-free but

for tie-breaking (EF-TB) if for each n there exists a function xn : (T × [0, 1])N → ∆(Xn
0 ),

symmetric over its coordinates, such that

Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl

and, for all i, j, n, t, and l, if li ≥ lj, and if ti and tj belong to the same group, then

uti [x
n
i (t, l)] ≥ uti [x

n
j (t, l)].

With this definition, an extension of Theorem 1 to semi-anonymous mechanisms follows
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from essentially the same proof.5 This implies that the stable matching procedure in example
C.1 is SP-L, because an agent envying another agent with a lower lottery number would
violate the stability condition. In the working paper version of this article we extend a
version of Theorem 2 to the semi-anonymous case.

D Details for Table 1

This Section provides supporting details for the classification of non-SP mechanisms pre-
sented as Table 1. For each mechanism we provide a formal definition of the mechanism in
our setting, a formal proof of the classification, and relevant references.

D.1 Anonymous Mechanisms.

D.1.1 Multi-Unit Auctions

See Appendix B.

D.1.2 Single-Unit Assignment

In single-unit assignment problems, each agent is to be assigned at most one indivisible
object, and there are no transfers. We refer the reader to Kojima and Manea (2010) and
references therein for a detailed description of the environment and applications.

Formally, we define single-unit assignment as follows. Denote the set of object types by
X0. In a market of size n there are {qx0 · n} units of object type x0 available.6 An agent
of type ti ∈ T has a strict utility function uti over X0. It is assumed that X0 includes a
null object ∅, in supply n−

∑
x′0 6=∅
{qx′0 · n} ≥ 0, so that the total quantity of objects equals

n. The utility of the null object is normalized to 0. Therefore, we assume that all agents
strictly prefer any other object (termed a proper object) to the null object.

Boston Mechanism and Adaptive Boston Mechanism

The Boston mechanism is a mechanism used in many cities to allocate seats in public
schools. Abdulkadiroğlu and Sönmez (2003) show that the Boston mechanism is not SP, and

5Lemma A.1 holds as is, since it is a statement about the empirical distribution of randomly drawn
vectors of types, and therefore does not rely on the definition of a mechanism. Lemma A.2 holds for any two
types ti and t′i in the same group, using the same proof, as for any such pairs of types the EF-TB condition
in the semi-anonymous case implies the same properties as in the anonymous case. Given the two lemmas,
the argument in the proof of Theorem 1 in Appendix A.1 holds as is, as long as we take t′i to be in the same
group as ti, which is all that is needed for the definition of SP-L for semi-anonymous mechanisms.

6A bracketed expression denotes the nearest integer to the real number within brackets.
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Abdulkadiroğlu et al. (2006) document that it was extensively manipulated in practice. We
now formally define the Boston mechanism and show that it is not SP-L. This complements
an example given by Kojima and Pathak (2009), in a formally different environment, where
the Boston mechanism can be manipulated in a large market. Here we consider the standard
version of the Boston mechanism, as opposed to the simplified version used in our application
in Section E.

We now define the Boston mechanism. Fix a vector of reports t. To be consistent with the
literature we will use the terminology of schools (the objects) and students (the agents). The
mechanism first assigns to each student a lottery number li, uniformly and independently
distributed in [0, 1]. The mechanism then proceeds in rounds, following the algorithm below.

1. The mechanism begins in round = 1. All students are initially unassigned.

2. Students that are still present in the mechanism take turns, in the order of their lottery
number, with higher lottery numbers going first. In her turn, student i is permanently
assigned to her roundth choice, as given by uti , if there are still seats in that school,
or remains unassigned otherwise.

3. If all students have been assigned, finish, otherwise increase round by 1 and go to Step
2.

Note that the algorithm must finish, as eventually all students are assigned either to a proper
school or to the null school x0 = ∅. Therefore, conditional on a vector of types t and lottery
numbers l the mechanism produces a well-defined outcome xn(t, l). Before lottery draws,
the mechanism is defined as

Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl.

We now show that the Boston mechanism is not SP-L. Consider an economy with two
proper schools, x0 = A,B, and the null school x0 = ∅, corresponding to being unmatched.
That is, X0 = {A,B, ∅}. Let qA = qB = 1/6. Consider a distribution m ∈ ∆̄T such that 2/3

of the agents prefer school A, while only 1/3 prefer school B. Then, in a large market, the
proper schools are filled in the first round with probability close to 1. Therefore, an agent
has a negligible chance of getting her second choice. The chance of getting her first choice
is (1/6)/(2/3) = 1/4 for school A and (1/6)/(1/3) = 1/2 for school B. That is, the limit
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mechanism is

φ∞(ti,m) =
1

4
· A+

3

4
· ∅ if uti [A] > uti [B]

1

2
·B +

1

2
· ∅ otherwise. (D.1)

Note in particular that an agent who prefers school A faces a tradeoff when reporting her
preferences. If she announces that she prefers school A, she will be assigned to it with 1/2

the chance she has of receiving school B. Therefore, it is not optimal for an agent with
uti [A] > uti [B] > uti [A]/2 to report truthfully.

Harless (2014) and Dur (2015) propose a variant of the Boston mechanism called the
adaptive Boston mechanism. In the adaptive Boston mechanism, if a student points to a
school where there are no seats left, then the student gets to point to the next school in her
preference list (see Mennle and Seuken (2015) for a formal definition). The adaptive Boston
mechanism is not SP-L. This is clear from our example above, because, in the example,
schools A and B both run out of capacity in the first round.

Probabilistic Serial Mechanism

The probabilistic serial mechanism has been proposed as a solution to the assignment
problem by Bogomolnaia and Moulin (2001). The mechanism works as follows. With time
running continuously, agents “eat” probability shares of their favorite object, out of all objects
still available. After probability shares of all objects are assigned, the objects are randomly
assigned to agents according to these probabilities. We refer the reader to Kojima and Manea
(2010) page 110 for a formal definition of the mechanism, as their analysis includes ours as
a particular case.

Bogomolnaia and Moulin (2001) show that the mechanism is EF. Consequently, Theorem
1 guarantees that it is SP-L. Note that the fact that this mechanism is SP-L is a particular
case of Kojima and Manea’s Theorem 1.

Hylland and Zeckhauser Pseudo-Market Mechanism

Hylland and Zeckhauser (1979) proposed a pseudo-market mechanism for single-unit
assignment, in which agents are endowed with equal budgets of an imaginary currency which
they use to purchase probability shares of the objects. The mechanism works as follows.
First, agents report their types, t. Second, the mechanism allocates each agent an equal
budget B > 0 of an artificial currency. Third, the mechanism computes a competitive
equilibrium price vector p∗ ∈ R|X0|

+ and a probabilistic allocation of goods to each agent.
Each consumer’s probabilistic allocation of goods is optimal given prices and the budget.
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We refer the reader to the original paper for full details.

Hylland and Zeckhauser (1979) prove existence of competitive equilibria in a setting that
is strictly more general than ours (in particular, they allow for indifferences). For each market
size n and each possible reported vector of types t ∈ T n, choose one such equilibrium, and
use this equilibrium to define the resulting allocation Φn(t). To make sure that anonymity is
satisfied, choose an equilibrium where all players of each type receive the same probabilistic
allocation, which is always possible. As Hylland and Zeckhauser (1979) observe on page 307,
since each agent has the same budget and faces the same prices, such a mechanism is EF.
Consequently, Theorem 1 guarantees that it is SP-L.

D.1.3 Multi-Unit Assignment

In multi-unit assignment problems, each agent is to be assigned a finite number of indivisible
objects. Transfers of a numeraire are not allowed. A prototypical application is the allocation
of courses to students at business schools. For further details we refer the reader to Budish
(2011).

Denote the finite set of object types by J . Each object j is available in supply {qj · n}.
A bundle x0 ∈ X0 = P(J) specifies a subset of the object types.7 A type ti specifies a utility
function uti over bundles. We will adopt the terminology of course allocation, denoting
object types by courses, and agents by students.

HBS Draft Mechanism

The mechanism used by Harvard Business School to allocate MBA courses was studied
empirically by Budish and Cantillon (2012). Using survey data, they showed that students
often misreport their preferences. Here we formally define the mechanism and show that it
is not SP-L.

The HBS draft mechanism does not allow students to express preferences over bundles
of courses. Instead, students submit a preference ordering over single courses. To examine
the possibility of truthful reporting, we restrict our attention to preferences over bundles
that are responsive to preferences over individual courses, with preferences over individual
courses strict. We will say that a student of type ti prefers course jA to course jB if she
prefers a bundle consisting only of course jA to a bundle consisting only of course jB, that
is, uti({jA}) > uti({jB}).

The HBS draft mechanism works as follows. First, each student is assigned a lottery
number li, uniformly distributed in [0, 1]. In the first round, students take turns ordered by

7P(J) denotes the power set of J .
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their lottery number, with higher lottery numbers going first. At her turn, student i chooses
her favorite course out of the ones that are still available. In round two, the same procedure
is repeated, but with students with lower lottery numbers going first. The procedure is
repeated in the following rounds, with higher lottery numbers going first in the odd rounds
and last in the even rounds. The mechanism ends after k rounds, where k is the number of
courses required per student.

To see that this mechanism is not SP-L, consider the following example based closely on
Example 1 of Budish and Cantillon (2012). There are 4 proper courses, J = {jA, jB, jC , jD},
of which students require k = 2 courses each. Each course has capacity for 2

3
of the pop-

ulation, that is qj = 2
3
for each j ∈ J . Consider a probability distribution over students’

reports where 1
3
of the population lists courses in the order jA, jB, jC , jD, 1

3
lists courses in

the order jB, jA, jC , jD, and 1
3
lists courses in the order jA, jC , jD, jB. Given this distribution

of reports, the probability that course jA reaches capacity either in the end of the first round,
or early in the second round converges to 1, as the market grows large. Therefore, a student
that ranks course jA as her first choice has probability close to 1 of receiving it, while a
student who ranks jA second has probability close to 0 of receiving it. In contrast, course jB
is very likely to reach capacity either late in the second round, or early in the third round,
in a large market. Consequently, a student who ranks course jB either first or second is very
likely to receive it. For this reason, a student whose true preference order is jB, jA, jC , jD
profits by misreporting as jA, jB, jC , jD. By doing so, the student receives both jA and jB,
her two favorite courses, rather than courses jB and jC if she reports truthfully.8

The Bidding Points Auction Mechanism

The bidding points auction mechanism is used by several business schools to allocate
MBA courses. It has been described by Sönmez and Ünver (2010) and Krishna and Ünver
(2008), who demonstrated that the mechanism is flawed in several important ways, despite
its widespread use. We now define the bidding points auction mechanism and show that it
is not SP-L.

The mechanism works as follows. Students report vectors of bids, with one bid per course.
Students can only spend up to a budget of B points, so that the set of actions is the set of
all vectors of bids that sum to at most B. We restrict the bids to be integers, so that

A = {ai ∈ {0, 1, · · · , B}J+ :
∑
j

ai,j ≤ B}.

8This particular profitable misreport is valid for any cardinal preferences consistent with the ordinal
preferences jB , jA, jC , jD. In other examples the profitability of a particular misreport might depend on
cardinal preference information.
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Given a vector of bids, the mechanism starts with the highest bid and allocates the course
to the student, as long as the course still has capacity. Ties are broken randomly.

To examine the possibility of truthful reporting, we assume that students’ preferences are
additive, meaning that their utility for a bundle of courses is the sum of their utilities from
the component courses in that bundle. This allows us to interpret a student’s bid vector as
an expression of their individual course preferences, and allows us to interpret the bidding
points auction as a direct mechanism with T = A.

Consider the case where there are three courses, J = {jA, jB, jC}. Consider an agent who
likes the three courses jA, jB, jC equally, and derives no utility of being unmatched. That is,

uti(jA) = uti(jB) = uti(jC) = B/3,

uti(∅) = 0. (D.2)

Consider a distribution of play m, such that, in the large-market limit, the last accepted bid
for the courses jA, jB, jC is 2B/3 with very high probability. In that case, the agent should
not report her true preferences, with bids equal to her utility. If bids are given by equation
(D.2), then with very high probability the agent does not receive any course. If instead she
bids B for one of the courses she likes, and 0 for the others, she receives at least one of the
courses. Therefore, the mechanism is not SP-L.

Approximate Competitive Equilibrium from Equal Incomes (A-CEEI)

Budish (2011) proposed a pseudo-market mechanism for multi-unit assignment problems.
Budish’s setting is a strict generalization of ours. For that reason, we do not repeat all formal
definitions, and refer the reader to the original paper for further details. In our setting, the
A-CEEI mechanism can be defined as follows. First, assign each student a lottery number
li uniformly and identically distributed in [0, 1]. Then give each student a budget in an
imaginary currency of 1 + li · β(n), where β(n) is a strictly positive constant that is weakly
decreasing in n, as defined in Budish (2011) page 1081. Budish’s Theorem 1 guarantees that
given these budgets there exists an approximate competitive equilibrium of the economy
where agents purchase courses using the imaginary currency. The A-CEEI mechanism selects
one such equilibrium, anonymously, and gives each agent his equilibrium allocation. This
defines a function xn(·, ·) giving an assignment of bundles xn(t, l) ∈ Xn

0 , for each vector of
types t and lottery draws l. The A-CEEI mechanism is defined as

Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl.
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To show that this mechanism is SP-L, we use Theorem 1. By the definition of approximate
competitive equilibrium (Budish’s Definition 1), after lotteries are drawn, no agent envies
another agent with a lower lottery number. Therefore, the CEEI mechanism is EF-TB, and
therefore SP-L.

The Generalized Hylland and Zeckhauser Pseudo-Market

Budish et al. (2013) have proposed an extension of the Hylland and Zeckhauser pseudo-
market mechanism that can be used for multi-unit assignment problems. In the simplest
setting they consider, students have additive preferences over courses. We therefore assume
that T only includes additive preferences. With this assumption, their setting is a strict
generalization of ours. Budish et al. (2013) then formally define the mechanism. It works
similarly to the Hylland and Zeckhauser mechanism, with students purchasing probability
shares of courses using a fake currency. The mechanism then calculates a competitive equi-
librium allocation of probability shares. Finally, the mechanism implements a lottery over
allocations that gives each agent her equilibrium probability share. Budish et al.’s Theorem
6 and Corollary 3 guarantee that the mechanism is well-defined, as both an equilibrium ex-
ists and can be implemented by a lottery over feasible assignments. Budish et al.’s Theorem
8 shows that the mechanism is envy-free. Along with our Theorem 1, this implies that the
mechanism is SP-L.

D.1.4 Exchange Economies

Walrasian Mechanism

A Walrasian mechanism implements competitive equilibrium allocations in an exchange
economy. Several contributions in the literature have considered approximate incentive com-
patibility of Walrasian mechanisms in large markets, including the classic paper by Roberts
and Postlewaite (1976). We refer the reader to Jackson and Manelli (1997) for an overview
and references. We note that this example has an infinite set of bundles X0, which does not
fit the framework in the body of the paper. However, the mechanism fits the more general
framework considered in Appendix A.1.2, which allows us to use Theorem 1 to classify it as
SP-L.

We consider an exchange economy with J goods. A type ti = (eti , vti) specifies

• An endowment vector eti ∈ RJ
+.

• A continuous utility function vti over bundles of goods in RJ
+, taking values in [0, 1].

Assume that the finite set of types T is such that, for any finite n and type vector t ∈ T n,
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there always exists at least one competitive equilibrium where all agents of the same type
receive the same bundle. This is guaranteed under standard assumptions on the set of utility
functions and endowment vectors.

Given a type ti, we define the utility function uti over net trades x0 ∈ RJ as

uti = vti(eti + x0) if eti + x0 ∈ RJ
+

−∞ if eti + x0 /∈ RJ
+.

We let X0 be RJ , the set of all possible vectors of net trades.

Having defined X0 and T , we now define the mechanism. For all n, t, Φn(t) anonymously
selects a competitive equilibrium allocation of an economy with the n agents of types in the
vector t, such that agents of the same type receive the same bundle, and assigns each agent
i her vector of net trades in that equilibrium.

Note that the Walrasian mechanism is EF, as each agent receives her preferred vector of
net trades given prices. Furthermore, while X0 is not finite, it does satisfy the more general
assumptions in Remark 1. Namely, X0 is a measurable subset of Euclidean space, utility is
measurable and bounded above by 1, and the utility of telling reporting truthfully is at least
0. Therefore, by Theorem 1, the Walrasian mechanism is SP-L.

D.2 Semi-Anonymous Mechanisms

Semi-anonymity generalizes anonymity to allow a mechanism to treat agents differently if
they belong to identifiably distinct groups. Examples include treating men and women
differently in a matching mechanism, and treating buyers and sellers differently in a double
auction. While the body of the paper deals with the notationally simpler case of anonymous
mechanisms, semi-anonymous mechanisms are analyzed in Appendix C. This subsection
classifies some of these mechanisms.

D.2.1 Double Auctions

Double auctions have been extensively studied as a simplified model of price formation. We
consider auctions where buyers and sellers submit bids, and prices are given as the average
of marginal winning and losing bids. See for example Rustichini et al. (1994) for further
details and references.

Types ti specify whether an agent is a potential buyer or seller, and a value. That is,
types specify the agent’s group, which is gti = b(uyer) or s(eller), and her value for the



16

object, which is vti . Sellers are endowed with a unit of the object, while buyers are not.
The set of types is T = G × V , with G = {b, s} and V = {1, · · · , v̄}. A bundle x0 specifies
whether the agent trades or not, with a dummy dx0 = 0 or 1, and the price of the transaction

px0 ∈ P = {(p′ + p′′)/2 : p′, p′′ ∈ V }.

We have X0 = {0, 1}×P . Buyers and sellers have quasilinear utility. The utility of a bundle
is 0 if the agent does not trade. If the bundle prescribes a trade, utility is vti − px0 for a
buyer, and px0 − vtifor a seller.

The mechanism works as follows. Given t, let ns(t) be the number of sellers, and therefore
the number of objects. The market clearing price is the average of the ns(t)

st and ns(t)+1st

highest valuations. The mechanism assigns bundles x0 with this price to all agents. The
objects are assigned to the agents with the ns(t) highest valuations, with uniform tie-breaking
for agents tied with the lowest winning valuation. Formally, the mechanism Φn(t) assigns
bundles x0 specifying trade to all buyers with valuations higher than the price, all sellers
with valuations lower than the price, and randomly rations agents with valuations equal to
the price.

Note that the mechanism is envy-free. This is so because all agents pay the same price,
and therefore do not envy the price paid by other agents. Moreover, at this price, agents
who trade with probability 1 would rather trade than not trade, and likewise agents that
trade with probability 0 would rather not trade. Agents that are rationed are indifferent
between trading or not trading, and therefore the mechanism is envy-free.9 Therefore, double
auctions are SP-L.

D.2.2 Matching

This setting is defined formally in Section C, Example C.1. That section also defines stable
matching mechanisms, which are shown to be SP-L using a semi-anonymous version of the
EF-TB condition.

Priority Match

Priority match mechanisms are described by Roth (1991), who proved that these mech-
anisms can produce unstable outcomes. Roth also documented that labor market clearing-
houses using priority matching mechanisms were very likely to fail, and hypothesized that
the reason why they failed is that they produce unstable outcomes.

9Note that agents are only rationed in the case of a tie between the marginal winning and losing bids,
and therefore both of these bids equal the price.
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The priority match works as follows. Given a man i (woman) and a woman (man) j
define the rank of i on j’s preferences as 1 plus the number of men (women) who are strictly
preferred to i. Assign to the pair i, j the priority pi,j equal to the rank of the man in the
woman’s preferences, times the rank of the woman in the man’s preferences. The mechanism
then proceeds by matching pairs with the lowest priorities first, breaking ties randomly.

To see that the priority match mechanism is not SP-L, consider the case where there is
a single trait for men. Then women are indifferent over all men. In this case, the priority
match mechanism coincides with the Boston mechanism, which is not SP-L.

It is interesting to note that Roth (1991) conjectured that the reason why stable matching
mechanisms seem to succeed in practice, while priority matching mechanisms lead to unrav-
elling and market failures, is stability. Our analysis, however, shows that stable matching
mechanisms are SP-L, while priority matching mechanisms are not. Therefore, Roth’s em-
pirical finding can be phrased equivalently as saying that SP-L mechanisms succeed while
non SP-L mechanisms fail.

E Application: The Boston Mechanism

The school choice literature has debated the desirability of the commonly used Boston mech-
anism for student assignment (cf. Section 5.4.3). While the earliest papers on the Boston
mechanism criticized it for being manipulable and argued in favor of the strategy-proof
Gale-Shapley mechanism (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2006),
subsequent papers showed that the Boston mechanism has Bayes-Nash equilibria that are
more attractive for students, from an ex-ante welfare perspective, than the dominant strat-
egy equilibria of Gale Shapley (Abdulkadiroğlu et al., 2011; Miralles, 2009; Featherstone and
Niederle, 2011). This section applies Theorem 2 to show that there exists a mechanism that
produces approximately the same outcomes as the desirable Bayes-Nash equilibria of the
Boston mechanism, but that is SP-L.

E.1 Definition of the Boston Mechanism

The set of bundles is a set of schools X0 = S ∪ {∅}. In a market of size n, there are bqs · nc
seats available in school s in S, where qs ∈ (0, 1) denotes the proportion of the market that s
can accommodate and b·c is the floor function. It is assumed that X0 includes a null school
∅ that is in excess supply. An agent of payoff type ti ∈ T has a utility function uti over X0,
with no indifferences. The utility of the null school is normalized to 0. In particular, all
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agents strictly prefer any of the proper schools to the null school.

We consider a simplified version of the Boston mechanism with a single round.10 The
action space is the set of proper schools A = S, so that each student points to a school.
If the number of students pointing to school s is lower than the number of seats, then all
of those students are allocated to school s. If there are more students who point to s than
its capacity, then students are randomly rationed, and those who do not obtain a seat in s
are allocated to the null school. Formally, given a vector of reports a, the allocation Φn

i (a)

assigns i to school ai with probability

min

{
bqai · nc

empai
[a] · n

, 1

}
,

and to the null school with the remaining probability. Consequently, the limit mechanism is

φ∞(s,m) = min

{
qs
ms

, 1

}
· s,

which denotes receiving school s with the probability min{qs/ms, 1}, which we term the
probability of acceptance to school s, and school ∅ with the remaining probability.

E.2 Results

The next section shows that the Boston mechanism has equilibria σ∗ where σ∗(ti, µ) depends
continuously on beliefs µ for µ ∈ ∆̄T . Theorem 2 then yields the following corollary:

Corollary E.1 (SP-L implementation of the Boston mechanism). The Boston mechanism
has limit Bayes-Nash equilibria that depend continuously on beliefs. For any such equilibrium
σ∗, the direct mechanism constructed according to equation (5.2) is SP-L, and, in the large
market limit, for any prior, truthful play of the direct mechanism produces the same outcomes
as equilibrium play of σ∗.

Interestingly, the SP-L mechanism constructed by (5.2) closely resembles the Hylland
and Zeckhauser (1979) pseudo-market mechanism for single-unit assignment.11 In the con-
structed mechanism, agents report their types, the mechanism computes the equilibrium

10This simplified version of the Boston mechanism streamlines the exposition. However, this simplification
means that the result in this section is stylized. An interesting question for future research is to extend
the result to the standard version of the Boston mechanism, and to variations such as the adaptive Boston
mechanism (Harless, 2014; Dur, 2015; Mennle and Seuken, 2015).

11See also Miralles (2009), which contains a very nice description of the connection between the Boston
mechanism’s Bayes-Nash equilibria and Hylland and Zeckhauser (1979).
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market-clearing probabilities associated with the distribution of reports, and each student
points to their most-preferred school given their reported types and the computed prob-
abilities. In Hylland and Zeckhauser (1979)’s mechanism, agents report their types, the
mechanism computes equilibrium market-clearing prices given the distribution of reports,
and each student purchases the lottery they like best given their reported types and the
computed prices.

E.3 Proof of Corollary E.1

In this section, we denote the Boston mechanism by ((Φ)n∈N, S). The corollary uses some
facts about limit equilibria of the Boston mechanism given a common identically indepen-
dently distributed prior over payoff types. Let Σ∗(µ) denote the set of limit equilibria of
the Boston mechanism given a prior µ in ∆T . Formally, denote by Σ∗∗ be the set of limit
Bayes-Nash equilibria of the Boston mechanism in the type space Ω∗. Then we define

Σ∗(µ) = {ρ ∈ RT×S
+ : ∃σ∗ ∈ Σ∗∗ such that ρ(s, ti) = σ∗(s, (ti, µ)) for all s ∈ S, ti ∈ T}.

That is, each element ρ of Σ∗(µ) specifies the probability ρ(s, ti) with which type ti agents
play action s in a limit equilibrium of the game with a common identically independently
distributed prior µ over payoff types. In other words, ρ is an equilibrium strategy profile
of the Boston mechanism with set of types T and a common iid prior µ. Let P ∗(µ) be the
set of vectors of probability of acceptance to each school in equilibrium. We then have the
following result:

Proposition E.1. The correspondence Σ∗(µ) is non- empty, convex-valued and continuous
in ∆̄T . The correspondence P ∗(µ) is non-empty, single-valued, and continuous in ∆̄T .

The Proposition shows that, given a prior µ, the Boston mechanism may have multiple
equilibria. Nevertheless, the probability of acceptance to each school is the same in any
equilibrium. The intuition is that lowering the probability of acceptance to a school weakly
reduces the set of students who want to point to it, and weakly increases the set of students
who want to point to other schools. Therefore, an argument similar to uniqueness argu-
ments in competitive markets with gross substitutes shows that equilibrium probabilities
of acceptance are unique. Moreover, equilibrium delivers well-behaved outcomes because
probabilities of acceptance vary continuously.

Before proving the Proposition, we use it to establish Corollary E.1.
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Proposition E.1 implies that Σ∗ is non-empty, lower hemi-continuous, and convex-valued.
The Michael Selection Theorem implies that Σ∗ has a continuous selection. Thus, there exists
a limit Bayes Nash equilibrium σ∗ of the Boston mechanism defined over the type space Ω∗,
and moreover this equilibrium σ∗(ti, µ) varies continuously with µ in ∆̄T . Because outcomes
of the Boston mechanism vary continuously with the empirical distribution of types, the
social choice function (F n)n∈N defined by

F n(ω) = Φn(σ∗(ω))

is continuous and limit Bayes-Nash implementable. Corollary E.1 then follows from Theorem
2.

E.3.1 Proof of Proposition E.1

The Boston mechanism has a limit

φ∞(s,m) = min{ qs
ms

, 1}.

Therefore, a strategy profile ρ∗ is in Σ∗(µ) if and only if, for all ti and t′i in T ,

uti [φ
∞(ρ∗(t′i), ρ

∗(µ))] ≤ uti [φ
∞(ρ∗(ti), ρ

∗(µ))].

In that case, we say that ρ∗ is a limit Bayes-Nash equilibrium of the Boston mechanism
given µ. Given a prior µ and strategy profile ρ, denote by ρ(µ) the induced distribution over
actions.

We establish the Proposition in a series of claims.

Claim 1. The correspondence Σ∗ is non-empty and upper hemi-continuous.

Proof. Payoffs
uti [φ

∞(ρ(ti), ρ(µ))]

vary continuously with σ and µ. Therefore, Σ∗ is non-empty and upper hemi-continuous
(see Fudenberg and Tirole (1991) p. 30).

Claim 2. For a fixed µ ∈ ∆T , the probabilities of acceptance to each school are the same in
any limit Bayes Nash equilibrium.
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Proof. Consider an equilibrium ρ. Let the mass of students pointing to school s in this
equilibrium be

ms =
∑
ti

ρ(ti)(s) · µ(ti)

and let the probability of acceptance at school s be ps. Let the vectors p = (ps)s∈S and
m = (ms)s∈S. To establish the result, consider another equilibrium ρ′, with associated
vectors of the mass of students pointing to each school m′ and probabilities of acceptance
p′. Define the set of schools for which ps > p′s as S+ and the set of schools for which ps < p′s

as S−.

Consider now the types who, in the equilibrium ρ, choose a school in S+ with positive
probability. All agents with types in

T+ = {ti ∈ T : max
s∈S+

uti · ps > max
s/∈S+

uti · ps}

must choose a school in S+. That is, all agents who strictly prefer some school in S+ to any
school not in S+ must point to one of the S+schools in equilibrium. Therefore,

∑
ti∈T+

µti ≤
∑
s∈S+

ms.

Consider the types who choose a school in S+ in the equilibrium ρ′. Note that the probability
of obtaining entry to any school in S+ is strictly lower at ρ′ than at ρ from how we constructed
S+. Similarly, the probability of obtaining entry to any school not in S+ is weakly higher.
Therefore, in the equilibrium ρ′, only agents in T+ possibly choose a school in S+ with
positive probability. That is, ∑

s∈S+

m′s ≤
∑
ti∈T+

µti .

These two inequalities then imply that

∑
s∈S+

m′s ≤
∑
s∈S+

ms.

However, for any s ∈ S+ we have
ms < m′s,

because ps > p′s, and because probabilities of acceptance are determined by the mass of
students pointing to each school. Taken together, these equations imply that S+ = ∅.
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Analogously, we can prove that S− = ∅, so p = p′ as desired.

Claim 3. P ∗ is non-empty, single-valued, and continuous.

Proof. The previous claims show that P ∗ is non-empty and single-valued. Moreover, P ∗ is
upper hemi-continuous, because Σ∗ is upper hemi-continuous and probabilities of acceptance
depend continuously on equilibrium strategies and the distribution of types. Finally, P ∗ is
continuous because continuity is equivalent to upper hemi-continuity for single-valued and
non-empty correspondences.

Claim 4. Σ∗ is convex-valued.

Proof. Fix µ, and consider two equilibria ρ and ρ′, and let ρ̄ be a convex combination of ρ and
ρ′. We must show that the strategy profile ρ̄ is an equilibrium. By Claim 2, the probability
of acceptance to each school is the same under ρ and ρ′. Therefore, the probability of
acceptance is the same under ρ̄. Because the support of ρ̄ is contained in the union of the
supports of ρ and ρ′, all types play optimally under ρ̄.

Claim 5. Consider a prior µ0 ∈ ∆̄T , and associated equilibrium ρ0 such that, for some ti
and s0, we have ρ0(ti)(s0) > 0. Then there exists a neighborhood of µ0 such that, for all µ
in this neighborhood, school s0 is optimal for ti given P ∗(µ). That is, for any s ∈ S,

P ∗s0(µ) · uti(s0) ≥ P ∗s (µ) · uti(s).

Proof. To reach a contradiction, assume that this is not the case for some type t′i and school
s0. Then there exists a school s1 and sequence of priors (µk)k∈N converging to µ0 such that,
for all k,

P ∗s0(µk) · ut′i(s0) < P ∗s1(µk) · ut′i(s1). (E.1)

Denote the mass of t′i types originally pointing to school s0 as the strictly positive constant

C = ρ0(t
′
i)(s0) · µ0(t

′
i).

Denote the relative increase in probability of acceptance at school s from prior µ0 to prior
µk by rs(µk) = P ∗s (µk)/P ∗s (µ0). We can assume, passing to a subsequence if necessary, that
the ordering of schools according to rs(µk) is the same for all k. Denote the schools where
the probability of acceptance increases relatively more than at school s0 as

S+ = {s : rs(µk) > rs0(µk)}.
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Let ρk be an equilibrium associated with µk. The mass of students pointing to schools
in S+ under ρk minus the mass of students pointing to schools in S+ under ρ0 equals

∑
s∈S+,ti∈T

ρk(ti)(s) · µk(ti)−
∑

s∈S+,ti∈T

ρ0(ti)(s) · µ0(ti).

This sum can be decomposed as

∑
s∈S+,ti∈T

(ρk(ti)(s)− ρ0(ti)(s)) · µ0(ti) (E.2)

+
∑

s∈S+,ti∈T

ρk(ti)(s) · (µk(ti)− µ0(ti)).

Students who point to schools in S+ under ρ0 continue to do so under ρk. And, because
equation (E.1) holds, the mass of students who point to schools in S\S+ under ρ0 but who
point to schools in S+ under ρk is at least C. Hence, the first term in expression (E.2) is
bounded below by C. Moreover, the second term converges to 0, because µk converges to
µ0. Therefore, for large enough k, the mass of students pointing to schools in S+ under ρk
is strictly larger than the mass of students pointing to schools in S+ under ρ0.

This implies that there exists a school s+ ∈ S+ such that the mass of students pointing to
s+ is strictly greater under ρk than under ρ0. And there exists a school s− ∈ S\S+ such that
the mass of students pointing to s− is strictly smaller under ρk than under ρ0. However, from
the way we constructed S+ we have that rs+(µk) > rs−(µk), which is a contradiction.

Claim 6. Consider a prior µ0, and associated equilibrium ρ0 such that, for some ti and school
s0, the mass of students pointing to s0 is strictly lower than its capacity:

∑
ti∈T

ρ0(ti)(s0) · µ0(ti) < qs0 .

Then there exists a neighborhood of µ0 such that, for all µ in this neighborhood, P ∗s0(µ) = 1.

Proof. Denote the excess supply of school s0 as the strictly positive constant

C = qs0 −
∑
ti∈T

ρ0(ti)(s0) · µ0(ti).

To reach a contradiction, assume that the claim’s conclusion does not hold. Then there
exists a sequence of priors (µk)k∈N converging to µ0 such that, for all k, P ∗s0(µk) < 1. Let ρk
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be an equilibrium given µk. The fact that the probability of acceptance at s0 is lower than
1 under ρk implies that the difference between the mass of students pointing to s0 under ρk
and ρ0 is bounded below by C. That is,

∑
ti∈T

ρk(ti)(s0) · µk(ti)−
∑
ti∈T

ρ0(ti)(s0) · µ0(ti) > C.

Because µk converges to µ0, this implies that, for large enough k,

∑
ti∈T

(ρk(ti)(s0)− ρ0(ti)(s0)) · µ0(ti) > C/2. (E.3)

As in the previous claim’s proof, denote the relative increase in the probability of accep-
tance at school s from prior µ0 to prior µk by rs(µk) = P ∗s (µk)/P ∗s (µ0). We can assume,
passing to a subsequence if necessary, that the ordering of schools according to rs(µk) is the
same for all k. Denote the set of schools where the relative probability of acceptance does
not increase more than in s0 by

S− = {s : rs(µk) ≤ rs0(µ0)}\{s0}.

All students who point to a school in S− ∪ {s0} under ρk point to schools in S− ∪ {s0}
under ρ0. Thus, ∑

s∈S−∪{s0},ti∈T

(ρk(ti)(s)− ρ0(ti)(s)) · µ0(ti) ≤ 0.

Substituting inequality (E.3) we have that, for large enough k,

∑
s∈S−,ti∈T

(ρk(ti)(s)− ρ0(ti)(s)) · µ0(ti) < −C/2. (E.4)

The mass of students pointing to schools in S− under ρk minus the mass of students
pointing to schools in S− under ρ0 equals

∑
s∈S−,ti∈T

ρk(ti)(s) · µk(ti)−
∑

s∈S−,ti∈T

ρ0(ti)(s) · µ0(ti).
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This sum can be decomposed into

∑
s∈S−,ti∈T

(ρk(ti)(s)− ρ0(ti)(s)) · µ0(ti)

+
∑

s∈S−,ti∈T

ρk(ti)(s) · (µk(ti)− µ0(ti)).

By inequality (E.4), for large enough k, the first term in the expression above is smaller
than −C/2. Because the second term converges to 0, we have that, for sufficiently large k,
the mass of students pointing to schools in S− under ρk is strictly lower than the mass of
students pointing to schools in S− under ρ0. Hence, for at least one school s− in S−, we
have rs−(µk) ≥ 1. But this contradicts rs−(µk) ≤ rs0(µk) < 1.

Claim 7. The correspondence Σ∗ is lower hemi-continuous in ∆̄T .

Proof. To prove lower hemi-continuity, fix µ0, an associated limit equilibrium ρ0, and consider
a sequence (µk)k≥1 converging to µ0. Fix ε > 0. We will show that there exists a sequence of
equilibria (ρk)k≥1, associated with the µk, which converges to a strategy profile with distance
lower than ε to ρ0.

Part 1: Define the candidate sequence of equilibria.

Let ρ′k be an equilibrium associated with µk. Passing to a subsequence, we can assume
that (ρ′k)k≥1 converges to an equilibrium ρ′0 associated with µ0. Define

ρk(ti) = ρ′k(ti) + (1− ε) · [ρ0(ti)− ρ′0(ti)] ·
µ0(ti)

µk(ti)
.

Note that this sequence converges to ε ·ρ′0 + (1− ε) ·ρ0. Hence, it converges to a point within
ε distance from ρ0.

Part 2: For large enough k, ρk is a strategy profile.

Because the sum
∑

s ρk(ti)(s) = 1, we only have to demonstrate that every ρk(ti)(s) is
nonnegative. To see this, note that ρk converges to ε · ρ′0 + (1 − ε) · ρ0. Hence, if either
ρ0(ti)(s) > 0 or ρ′0(ti)(s) > 0, then ρk(ti)(s) > 0 for sufficiently large k. The remaining case
is when ρ0(ti)(s) = ρ′0(ti)(s) = 0. In this case we have that ρk(ti)(s) = ρ′k(ti)(s) ≥ 0.

Part 3: For sufficiently large k, the ρk are equilibria.

We will begin by proving that, for sufficiently large k, the probabilities of acceptance
under ρk equal those under ρ′k. That is, the probabilities of acceptance under ρk equal
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P ∗(µk). To see this, note that the mass of agents pointing to school s under ρk equals

∑
ti

ρk(ti)(s) · µk(ti) =
∑
ti

ρ′k(ti)(s) · µk(ti) + (1− ε) ·
∑
ti

[ρ0(ti)(s)− ρ′0(ti)(s)] · µ0(ti). (E.5)

There are two cases. The first case is when the mass of students pointing to s is strictly
lower than qs under either ρ0 or ρ′0. In this case, we have P ∗s (µ0) = 1, so that, in the mass
of students pointing to s is at most equal to qs under both ρ′0 and ρ0. The mass of students
pointing to school s under ρk converges to

ε · (
∑
ti∈T

ρ′0(ti)(s)) + (1− ε) · (
∑
ti∈T

ρ0(ti)(s)).

That is, to an average of the mass of students pointing to s under ρ′0 and ρ0. Because both
quantities are weakly smaller than qs, and at least one of them is strictly lower than qs, this
average is strictly lower than qs. Thus, for large enough k, the probability of acceptance to
s under ρk is 1. This is equal to the probability of acceptance under ρ′k, by Claim 6.

The second case is when the mass of students pointing to school s is at least equal to qs
both under ρ0 and under ρ′0. If this is the case, then the mass of students pointing to school
s is the same under ρ0 and under ρ′0, because probabilities of acceptance are the same in any
equilibrium under µ0. Therefore, the sum

∑
ti

[ρ0(ti)(s)− ρ′0(ti)(s)] · µ0(ti) = 0.

Substituting this in Equation (E.5), we have that the probabilities of acceptance under ρk
and ρ′k are equal, as desired.

To complete the proof we show that, for large enough k, the strategies ρk are optimal
given P ∗(µk). Consider a school s with ρk(ti)(s) > 0. Therefore, either ρ′k(ti)(s) > 0 or
ρ0(ti)(s) > 0. If ρ′k(ti)(s) > 0, then it is optimal for type ti to point to s under P ∗(µk),
because ρ′k is an equilibrium. Likewise, if ρ0(ti)(s) > 0, then Claim 5 implies that, for large
enough k, it is optimal for type ti to report s under P ∗(µk).

The proposition then follows from Claims 1, 3, and 7.
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