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Abstract

We propose a criterion of approximate incentive compatibility, strategy-proofness
in the large (SP-L), and argue that it is a useful second-best to exact strategy-
proofness (SP) for market design. Conceptually, SP-L requires that an agent
who regards a mechanism’s “prices” as exogenous to her report – be they tradi-
tional prices as in an auction mechanism, or price-like statistics in an assignment
or matching mechanism – has a dominant strategy to report truthfully. Math-
ematically, SP-L weakens SP both by considering incentives in a large-market
limit rather than finite economies and by considering incentives from an interim
perspective rather than ex-post.
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1 Introduction

Strategy-proofness (SP), that playing the game truthfully is a dominant strategy, is perhaps
the central notion of incentive compatibility in market design. SP is frequently imposed as
a design requirement in theoretical analyses, across a broad range of assignment, auction,
and matching problems. And, SP has played a central role in several design reforms in prac-
tice, including the redesign of school choice mechanisms in several cities, the redesign of the
market that matches medical school graduates to residency positions, and efforts to create
mechanisms for pairwise kidney exchange (See especially Roth (2008) and Pathak and Sön-
mez (2008, 2013)). There are several reasons why SP is considered so attractive. First, SP
mechanisms are robust: since reporting truthfully is a dominant strategy, equilibrium does
not depend on market participants’ beliefs about other participants’ preferences or informa-
tion. Second, SP mechanisms are strategically simple: market participants do not have to
invest time and effort collecting information about others’ preferences or about what equi-
librium will be played. Third, with this simplicity comes a measure of fairness: a participant
who lacks the information or sophistication to game the mechanism is not disadvantaged
relative to sophisticated participants. Fourth, SP mechanisms generate information about
true preferences that may be useful to policy makers.1

However, SP is restrictive. In a variety of market design contexts, including matching,
school choice, course allocation, and combinatorial auctions, impossibility theorems show
that SP places meaningful limitations on what other attractive properties a mechanism can
hope to satisfy.2 And, SP is an extremely strong requirement. If there is a single configuration
of participants’ preferences in which a single participant has a strategic misreport that raises
his utility by epsilon, a mechanism is not SP. A natural idea is to look for incentives criteria
that are less demanding and less restrictive than SP, while still maintaining some of the

1See Wilson (1987) and Bergemann and Morris (2005) on robustness, Fudenberg and Tirole (1991), p. 270
and Roth (2008) on strategic simplicity, Friedman (1991), Pathak and Sönmez (2008) and Abdulkadiroğlu
et al. (2006) on fairness and Roth (2008) on the advantage of generating preference data.

2In matching problems such as the National Resident Matching Program, SP mechanisms are not stable
(Roth, 1982). In multi-unit assignment problems such as course allocation, the only SP and ex-post efficient
mechanisms are dictatorships (Papai, 2001; Ehlers and Klaus, 2003; Hatfield, 2009), which perform poorly on
measures of fairness and ex-ante welfare (Budish and Cantillon, 2012). In school choice problems, which can
be interpreted as a hybrid of an assignment and a matching problem (Abdulkadiroğlu and Sönmez, 2003),
there is no mechanism that is both SP and ex-post efficient (Abdulkadiroğlu et al., 2009). In combinatorial
auction problems such as the FCC spectrum auctions (Milgrom, 2004; Cramton et al., 2006), the only SP
and efficient mechanism is Vickrey-Clarke-Groves (Green and Laffont, 1977; Holmstrom, 1979), which has
a variety of important drawbacks (Ausubel and Milgrom, 2006). Perhaps the earliest such negative result
for SP mechanisms is Hurwicz (1972), which shows that SP is incompatible with implementing a Walrasian
equilibrium in an exchange economy.
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advantages of SP design.

This paper proposes a criterion of approximate strategy-proofness called strategy-proofness
in the large (SP-L). SP-L weakens SP in two ways. First, whereas SP requires that truthful
reporting is optimal in any size economy, SP-L requires that truthful reporting is optimal only
in the limit as the market grows large. Second, whereas SP requires that truthful reporting
is optimal against any realization of opponent reports, SP-L requires that truthful reporting
is optimal only against any full-support, independent and identically distributed probabil-
ity distribution of reports. That is, SP-L examines incentives from the interim perspective
rather than ex-post. Because of this interim perspective, SP-L is weaker than the traditional
notion of approximate strategy-proofness; this weakening is important both conceptually and
for our results. At the same time, SP-L is importantly stronger than approximate Bayes-
Nash incentive compatibility, because SP-L requires that truthful reporting is best against
any (full-support, i.i.d.) probability distribution of opponent reports, not just the single
probability distribution associated with Bayes-Nash equilibrium play. This strengthening is
important because it allows SP-L to approximate, in large markets, the attractive properties
such as robustness and strategic simplicity which are the reason why market designers like
SP better than Bayes-Nash in the first place.

This combination of the large market limit and the interim perspective is powerful for
the following reason: it causes each participant to regard the societal distribution of play
as exogenous to his own report (more precisely, the distribution of the societal distribution
of play). As will become clear, regarding the societal distribution of play as exogenous
to one’s own play is a generalization of the idea of regarding prices as exogenous, i.e., of
price taking. In some settings, such as multi-unit auctions or Walrasian exchange, the two
concepts are equivalent. In other settings, such as school choice or two-sided matching,
regarding the societal distribution of play as exogenous is equivalent to regarding certain
price-like summary statistics of the mechanism as exogenous.

SP-L thus draws a distinction between two ways a mechanism can fail to be SP. If
a mechanism is manipulable by participants who can affect prices (or price-like summary
statistics), but is not manipulable by participants who regard the societal distribution of play
as exogenous, the mechanism is SP-L. If a mechanism is manipulable even by participants
who regard the societal distribution of play as exogenous – if even a price taker, or a taker of
price-like statistics, wishes to misreport – then the mechanism, in addition to not being SP, is
not SP-L. Intuition suggests that these latter violations of SP are especially problematic for
practice, because, to manipulate a mechanism, a participant only needs information about
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aggregate statistics, such as how popular is each school in a school matching mechanism. This
is problematic because there are many real-world environments where participants have this
kind of information. SP-L rules out mechanisms that violate SP in this particularly serious
way.

After we present and discuss the formal definition of SP-L, the next part of the paper
provides a classification of existing non-SP mechanisms into those that are SP-L and those
that are not SP-L. The classification, displayed in Table 1, organizes both the prior theory
literature on which non-SP mechanisms have good incentives properties in large markets
and the empirical record on when non-SP matters in real-world large markets. In the SP-
L column are numerous mechanisms that, while not SP, have been shown theoretically to
have approximate incentives for truth telling in large markets. Examples include the Wal-
rasian mechanism (Roberts and Postlewaite, 1976; Jackson and Manelli, 1997), double auc-
tions (Rustichini et al., 1994; Cripps and Swinkels, 2006), multi-unit uniform-price auctions
(Swinkels, 2001), the Gale-Shapley deferred acceptance algorithm (Immorlica and Mahdian,
2005; Kojima and Pathak, 2009), and probabilistic serial (Kojima and Manea, 2010). This
literature has used a wide variety of definitions of approximate incentive compatibility, as
well as a wide variety of analysis techniques. We use a single definition and a single analy-
sis technique (Theorem 1) and find that all of these mechanisms are SP-L.3 Our technique
also classifies as SP-L several mechanisms whose large-market incentive properties had not
previously been formally studied.

On the other hand, in the non-SP-L column are numerous mechanisms for which there is
explicit empirical evidence that real-world market participants strategically misreport their
preferences, to the detriment of design objectives such as efficiency or fairness. Examples
include multi-unit pay-as-bid auctions (Friedman, 1960, 1991), the Boston mechanism for
school choice (Abdulkadiroğlu et al., 2006, 2009), the bidding points auction for course
allocation (Sönmez and Ünver, 2010; Budish, 2011), the draft mechanism for course allocation
(Budish and Cantillon, 2012), and the priority-match mechanism for two-sided matching
(Roth, 2002). This literature has frequently emphasized that the mechanism in question is
not SP; our point is that the mechanisms for which there is documentation of important
incentives problems in practice not only are not SP, but are not even SP-L. Overall, the
classification exercise suggests that the relevant distinction for practice, in markets with a

3Note as well that the traditional ex-post notion of approximate strategy-proofness is too strong to obtain
the classification. For instance, the uniform-price auction is SP-L but is not approximately strategy-proof
in an ex-post sense; even in a large economy it is always possible to construct a knife-edge situation where a
single player, by shading her demand, can have a large discontinuous influence on the market-clearing price.
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Table 1: SP-L and non SP-L mechanisms for some canonical market design problems

Problem Manipulable in the Large SP-L
Multi-Unit
Auctions Pay as Bid Uniform Price

Single-Unit
Assignment Boston Mechanism Probabilistic Serial

HZ Pseudomarket

Multi-Unit
Assignment

Bidding Points Auction
HBS Draft

Approximate CEEI
Generalized HZ

Matching Priority Match Deferred Acceptance

Other Walrasian Mechanism
Double Auctions

Notes: See Supplementary Appendix D for a detailed description of each mechanism in the table as well
as a proof of the mechanism’s classification as either SP-L or manipulable in the large. Abbreviations:
HBS = Harvard Business School; HZ = Hylland and Zeckhauser; CEEI = competitive equilibrium from
equal incomes.

large number of participants, is not “SP vs. not SP”, but rather “SP-L vs. not SP-L”.

The last part of the paper provides conditions under which, in large markets, SP-L is
no more restrictive than Bayes-Nash incentive compatibility. The result is similar in spirit
to the classic revelation principle (Myerson, 1979) (for more details on the relationship see
Section 5.2). Suppose we are given a mechanism that is not SP-L but that has Bayes-
Nash equilibria, for any common-knowledge i.i.d. prior beliefs about the distribution of
types, and that the equilibria are continuous, in a sense made precise in the text. We then
construct a mechanism that is SP-L and implements approximately the same outcomes as
the original mechanism. The construction uses proxy agents. Participants report their types
to our mechanism, which computes the empirical distribution of types, and then plays the
original mechanism on each participant’s behalf using the Bayes-Nash equilibrium strategy
associated with the empirical distribution of reports. This converts a mechanism with Bayes-
Nash equilibria, which depend on the prior, into an SP-L mechanism that implements the
same outcome in the large-market limit. We provide a detailed application of the theorem
to the Boston mechanism for school assignment. The application illustrates the construction
and contributes to an ongoing debate in the market design literature.

Overall, our analysis suggests that in large market settings SP-L approximates the advan-
tages of SP design while being significantly less restrictive. Our hope is that market designers
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will view SP-L as a practical alternative to SP in settings with a meaningful number of par-
ticipants and in which SP mechanisms perform poorly. An illustration of this approach is the
new MBA course allocation mechanism implemented at the Wharton School. In course allo-
cation, impossibility theorems for SP mechanisms led the literature to conclude that random
serial dictatorship is perhaps the best possible mechanism.4 By relaxing SP to SP-L, Budish
(2011) designed a new mechanism with better efficiency and fairness properties. In 2013,
Wharton adopted this new mechanism in place of a previous, non SP-L mechanism. The
new mechanism’s improved incentives played a key role in Wharton’s adoption decision, and
in the mechanism’s success in the first two years of use. This is evidenced by student surveys
and by administrators’ reports that they value the truthful preference information generated
by the mechanism (Budish et al., 2015). Notably, the administrators were concerned about
how easy the old mechanism was to manipulate, but were not concerned about the fact that
the new mechanism is SP-L but not SP.5

The rest of the paper is organized as follows. Section 2 defines the environment. Section
3 defines and discusses SP-L. Section 4 presents the classification of non-SP mechanisms.
Section 5 presents the result on constructing SP-L mechanisms from Bayes-Nash mechanisms.
Section 6 applies the construction to the Boston mechanism. Section 7 discusses technical
extensions and related literature. Section 8 concludes. Proofs and other supporting materials
are in the appendix.

2 Environment

We work with an abstract mechanism design environment in which mechanisms assign out-
comes to agents based on the set of agents’ reports. There is a finite set of (payoff) types
T and a finite set of outcomes (or consumption bundles) X0. The outcome space
describes the outcome possibilities for an individual agent. For example, in an auction the
elements in X0 specify both the objects an agent receives and the payment she makes. In
school assignment, X0 is the set of schools to which a student can be assigned. An agent’s

4For instance, Hatfield (2009) concludes (pg. 514) “Although unfortunate, it seems that in many of these
applications, the best procedure (even if it is not considered ’fair’) may well be a random serial dictatorship.”
For related conclusions see Papai (2001), pg. 270, and Ehlers and Klaus (2003), pg. 266.

5In the materials Wharton uses to train its students on how to use the new mechanism Wharton spends
several slides going over why it is in students’ interest to report their preferences truthfully. One excerpt
which highlights the role of SP-L is: “Doesn’t it pay to think strategically? NO! You cannot influence the
clearing price (you are only one of 1600 students). So your best ‘strategy’ is to assume the clearing prices
are given. And to tell Course Match [the mechanism] your true preferences so that it can buy you your best
schedule, given your preferences, your budget and the given clearing prices” (Wharton, 2013).
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type determines her preferences over outcomes. For each ti ∈ T there is a von Neumann-
Morgenstern expected utility function uti : X → [0, 1], where X = ∆X0 denotes the set
of lotteries over outcomes. Preferences are private values in the sense that an agent’s utility
depends exclusively on her type and the outcome she receives.

We study mechanisms that are well defined for all possible market sizes, holding fixed
X0 and T . For each market size n ∈ N, where n denotes the number of agents, an allocation
is a vector of n outcomes, one for each agent, and there is a set Yn ⊆ (X0)n of feasible
allocations. For instance, in an auction, the assumption that X0 is fixed imposes that
the number of potential types of objects is finite, and the sequence (Yn)N describes how the
supply of each type of object changes as the market grows.

Definition 1. Fix a set of outcomes X0, a set of types T , and a sequence of feasibility
constraints (Yn)N. A mechanism {(Φn)N, A} consists of a finite set of actions A and a
sequence of allocation functions

Φn : An → ∆((X0)n), (2.1)

each of which satisfies feasibility: for any n ∈ N and a ∈ An, the support of Φn(a) is contained
in the feasible set Yn. A mechanism is direct if A = T .

We assume that mechanisms are anonymous, which requires that each agent’s outcome
depends only on her own action and the distribution of all actions. Formally, a mechanism
is anonymous if the allocation function Φn(·) is invariant to permutations for all n ∈ N.
Anonymity is a natural feature of many large-market settings. In Supplementary Appendix
C we relax anonymity to semi-anonymity (Kalai, 2004). A mechanism is semi-anonymous
if agents are divided into a finite set of groups, and an agent’s outcome depends only on her
own action, her group, and the distribution of actions within each group. Semi-anonymity
accommodates applications in which there are asymmetries among classes of participants,
such as double auctions in which there are distinct buyers and sellers, school choice problems
in which students are grouped into different priority classes, and matching markets that are
divided into two sides.

We adopt the following notation. Given a finite set S, the set of probability distributions
over S is denoted ∆S, and the set of distributions with full support ∆̄S. Distributions over
the set of types will typically be denoted as µ ∈ ∆T , and distributions over actions by
m ∈ ∆A. Throughout the analysis we will use the supremum norm on the sets ∆T , ∆A

and X. Since the number of types, actions and outcomes is finite, all of these probability
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spaces are subsets of Euclidean space. Using this representation, we denote the distance
between two outcomes x, x′ ∈ X as ‖x− x′‖, and likewise for distributions over T and A. In
particular, we use this topology in the definition of limit mechanisms below.

Given a vector of types t ∈ T n, we use the notation emp[t] to denote the empirical
distribution of t on T . That is, for each type τ ∈ T , emp[t](τ) is the fraction of coordinates
of t that equal τ , and the vector emp[t] = (emp[t](τ))τ∈T . Analogously, given a vector of
actions a ∈ An, emp[a] denotes the empirical distribution of a on A.

3 Strategy-proof in the Large

In this section we formally define strategy-proofness in the large (SP-L) and discuss its
interpretation and its relationship to previous concepts.

3.1 Large-Market Limit

We begin by defining our notion of the large-market limit. Given a mechanism {(Φn)N, A},
define, for each n, the function φn : A×∆A→ X according to

φn(ai,m) =
∑

a−i∈An−1

Φn
i (ai, a−i) · Pr(a−i|a−i ∼ iid(m)), (3.1)

where Φn
i (ai, a−i) denotes the marginal distribution of the ith coordinate of Φn(a), i.e., the

lottery over outcomes received by agent i when she plays ai and the other n− 1 agents play
a−i, and Pr(a−i|a−i ∼ iid(m)) denotes the probability that the action vector a−i is realized
given n − 1 independent identically distributed (i.i.d.) draws from the action distribution
m ∈ ∆A. In words, φn(ai,m) describes what an agent who plays ai expects to receive, ex
interim, if the other n− 1 agents play i.i.d. according to action distribution m.

We use the interim allocation function φn to define the large-market limit.

Definition 2. The large-market limit of mechanism {(Φn)N, A} is the function φ∞ :

A×∆A→ X given by
φ∞(ai,m) = lim

n→∞
φn(ai,m).

In words, φ∞(ai,m) equals the lottery that an agent who plays ai receives, in the limit
as the number of agents grows large, when the other agents play i.i.d. according to the
probability distribution m.6

6The randomness in how we take the large-market limit is in contrast with early approaches to large-
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It is easy to construct examples of mechanisms that do not have limits. For instance, if a
mechanism is a uniform-price auction when n is even and is a pay-as-bid auction when n is
odd, then the mechanism does not have a limit. However, we are not aware of a mechanism
used in practice, or proposed for practical use, that does not have a limit. For the remainder
of the paper we restrict attention to mechanisms that have limits.

Interpretation of the Limit and Relationship with Price Taking The randomness
in how we take the large-market limit is economically important for the following reason: in
our limit, the distribution of the empirical distribution of play is exogenous to any particular
agent’s own play. We state this claim formally in the Appendix as Lemma I.1. Intuitively,
if a fair coin is tossed n times the distribution of the number of heads is stochastic, and
the influence of the ith coin toss on this distribution vanishes to zero as n→∞; whereas if
the market grew large in a deterministic fashion one player’s decision between heads or tails
could be pivotal as to whether the number of heads is greater than or less than 50%.

We interpret treating the societal distribution of play as exogenous to one’s own report
as a generalized version of price taking. Suppose that a mechanism has prices that are
a function of the empirical distribution of play. For example, in a uniform-price auction,
price is determined based on where reported demand equals reported supply. In the limit,
because the distribution of the empirical distribution of play is exogenous to each agent, the
distribution of prices is exogenous to each agent. Now suppose that a mechanism does not
have prices, but has price-like statistics that are functions of the empirical distribution of
play and sufficient statistics for the outcomes received by agents who played each action.
For example, in Bogomolnaia and Moulin’s (2001) assignment mechanism, the empirical
distribution of reports determines statistics called “run-out times”, which describe at what
time in their algorithm each object exhausts its capacity. As a second example, in Azevedo
and Leshno (2011)’s matching model the empirical distribution of reports determines a set
of statistics called “cutoffs” which describe the level of desirability necessary to achieve each
possible match partner. In our large-market limit, each agent regards the distribution of
these price-like statistics as exogenous to their own report.

market analysis, such as Debreu and Scarf’s (1963) replicator economy and Aumann’s (1964) continuum
economy. It is more closely related to the random economy method used in Immorlica and Mahdian’s (2005)
and Kojima and Pathak’s (2009) studies of large matching markets.
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3.2 Definition of SP-L

A mechanism is strategy-proof (SP) if it is optimal for each agent to report truthfully, in
any size market, given any realization of opponent reports.

Definition 3. The mechanism {(Φn)N, T} is strategy-proof (SP) if, for all n, all ti, t′i ∈ T ,
and all t−i ∈ T n−1

uti [Φ
n
i (ti, t−i)] ≥ uti [Φ

n
i (t′i, t−i)].

We say that a mechanism is strategy-proof in the large (SP-L) if it is optimal for each
agent to report truthfully, in the large-market limit defined in Definition 2, given any full
support i.i.d. distribution of opponent reports.

Definition 4. The mechanism {(Φn)N, T} is strategy-proof in the large (SP-L) if, for
any m ∈ ∆̄T and all ti, t′i ∈ T

uti [φ
∞(ti,m)] ≥ uti [φ

∞(t′i,m)]. (3.2)

Equivalently, the mechanism is SP-L if, for any m ∈ ∆̄T and ε > 0 there exists n0 such that,
for all n ≥ n0 and all ti, t′i ∈ T

uti [φ
n(ti,m)] ≥ uti [φ

n(t′i,m)]− ε.

Otherwise, the mechanism is manipulable in the large.

SP-L weakens SP in two ways. First, while SP requires that truthful reporting is opti-
mal in any size market, SP-L requires that truthful reporting is optimal only in the limit
as the market grows large. In large finite markets truthful reporting is only optimal in an
approximate sense. Second, SP evaluates what report is best based on the (ex-post) realiza-
tion of reports, whereas SP-L evaluates based on the (ex-interim) probability distribution of
reports. A mechanism can be SP-L even if it has the property that, given ε > 0, in any size
market n one can find a type ti and realization of opponent reports t−i for which ti has a
misreport worth more than ε. What SP-L rules out is that there is a probability distribution
of opponent reports with this property. Implicitly, SP-L takes a view on what information
participants have in a large market when they decide how to play – they may have a (possibly
incorrect) sense of the distribution of opponent preferences, but they do not know the exact
realization of opponent preferences.

These two weakenings place SP-L between two commonly used notions of incentive com-
patibility. SP-L is weaker than the standard notion of asymptotic strategy-proofness, which
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requires that reporting truthfully is approximately optimal, in a large enough market, for any
realization of opponent reports.7 This distinction is important for the classification below;
nearly all of the mechanisms that are classified as SP-L would fail this stronger criterion (e.g.,
uniform-price auctions, deferred acceptance), with the lone exception being the probabilistic
serial mechanism. At the same time, SP-L is stronger than approximate Bayes-Nash incen-
tive compatibility, which requires that truthful reporting is approximately optimal against
the true probability distribution of opponent reports, which itself is assumed to be common
knowledge. In contrast, SP-L requires truthful reporting to be approximately optimal for
any probability distribution of opponent reports. This distinction is what allows SP-L mech-
anisms to maintain, at least approximately, some of the attractive features of SP design such
as robustness, strategic simplicity, and fairness to unsophisticated agents.

Finally, the definition of the limit gives a useful way to think about SP-L as a generaliza-
tion of price-taking. In the large-market limit the aggregate distribution of actions depends
only on the distribution of one’s opponents’ actions, and not on one’s own action. Thus, in
the limit, agents take as given any statistic of the distribution of actions. In particular, in a
mechanism that uses prices that are a function of the distribution of actions, agents take the
distribution of prices as given. Thus, a mechanism is SP-L if reporting truthfully is optimal
taking prices as given – or, more generally, taking the aggregate distribution of play as given.
A mechanism is not SP-L if even an agent who takes prices as given – or, more generally,
takes the aggregate distribution of play as given – wishes to misreport.

4 Classification of Non-SP Mechanisms

This section classifies a number of non-SP mechanisms into SP-L and manipulable in the large
(Table 1 in the Introduction), and discusses how the classification organizes the evidence on
manipulability in large markets. Specifically, all of the known mechanisms for which there
is a detailed theoretical case that the mechanism has approximate incentives for truthtelling
in large markets are SP-L (Section 4.2), and all of the known mechanisms for which there is
empirical evidence that non-strategy-proofness causes serious problems even in large markets
are manipulable in the large (Section 4.3). In particular, the classification of mechanisms

7For example, Liu and Pycia (2011) define a mechanism as asymptotically strategy-proof if, given ε > 0,
there exists n0 such that for all n ≥ n0, types ti, t′i, and a vector of n− 1 types t−i,

uti [Φ
n
i (ti, t−i)] ≥ uti [Φni (t′i, t−i)]− ε.

A similar definition is in Hatfield, Kojima and Kominers (2015).
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based on whether or not they are SP-L predicts whether misreporting is a serious problem
in practice better than the classification of mechanisms based on whether or not they are
SP. These results suggest that, in large markets, SP-L versus not SP-L is a more relevant
relevant dividing line than SP versus not SP.

Before proceeding, we make three brief observations regarding the classification. First,
both the SP-L and the manipulable in the large columns of Table 1 include mechanisms that
explicitly use prices (e.g., multi-unit auctions), as well as mechanisms that do not use prices
(e.g., matching mechanisms). For the mechanisms that do use prices, the SP-L ones are
exactly those where an agent who takes prices as given wishes to report truthfully, such as
the uniform-price auction. Second, the table is consistent with both Milton Friedman’s (1960;
1991) argument in favor of uniform-price auctions over pay-as-bid auctions, and Alvin Roth’s
(1990; 1991; 2002) argument in favor of deferred acceptance over priority-match algorithms.
Notably, while both Friedman’s criticism of pay-as-bid auctions and Roth’s criticism of
priority-match algorithms were made on incentives grounds, the mechanisms they suggested
in their place are not SP but are SP-L. Third, with the exception of probabilistic serial,
none of the SP-L mechanisms satisfy a stronger, ex-post, notion of approximate strategy-
proofness. That is, the classification would not conform to the existing evidence, nor to
Friedman’s and Roth’s arguments, without the ex-interim perspective in the definition of
SP-L.

4.1 Obtaining the Classification

To show that a mechanism is not SP-L it suffices to identify an example of a distribution of
play under which agents may gain by misreporting, even in the limit. For SP-L mechanisms,
this section gives two easy-to-check sufficient conditions for a mechanism to be SP-L, which
directly yield the classification for all of the SP-L mechanisms in Table 1. Formal definitions
of each mechanism and detailed derivations are in Supplementary Appendix D.8

The first sufficient condition is envy-freeness, a fairness criterion which requires that no
player i prefers the assignment of another player j, for any realization of the reported types
t.

8Two of these mechanisms do not fit the framework used in the body of the paper. Deferred acceptance
is a semi-anonymous mechanism, and the Walrasian mechanism has an infinite set of bundles. For details of
how we accommodate these generalizations, see Supplementary Appendix D.



AZEVEDO AND BUDISH 12

Definition 5. A direct mechanism {(Φn)N, T} is envy-free (EF) if, for all i, j, n, t:

uti [Φ
n
i (t)] ≥ uti [Φ

n
j (t)].

Theorem 1 below shows that EF implies SP-L. The intuition for the proof is as follows. In
anonymous mechanisms, the gain to player i from misreporting as player j can be decomposed
as the sum of the gain from receiving j’s bundle, holding fixed the aggregate distribution of
types, plus the gain from affecting the aggregate distribution of types (expression (9.2) in
Appendix 9). Envy-freeness directly implies that the first component in this decomposition
is non-positive. Lemma I.1 then implies that the second component becomes negligible in
large markets. More precisely, the effect of misreporting on the distribution of the empirical
distribution of reports vanishes at a rate of essentially

√
n, which yields both that EF implies

SP-L and the convergence rate for EF mechanisms as stated in Theorem 1.

Most of the mechanisms in the SP-L column of Table 1 are EF, with the only exceptions
being approximate CEEI and deferred acceptance.9 Fortunately, these mechanisms satisfy
a weakening of EF that we show is also sufficient. Specifically, each of these mechanisms
involves a certain form of tie-breaking lottery, and after this lottery is realized no agent
envies another agent with a lower lottery number. Formally,10

Definition 6. A direct mechanism {(Φn)N, T} is envy-free but for tie breaking (EF-

TB) if for each n there exists a function xn : (T × [0, 1])N → ∆(Xn
0 ), symmetric over its

coordinates, such that
Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl

and, for all i, j, n, t, and l, if li ≥ lj then

uti [x
n
i (t, l)] ≥ uti [x

n
j (t, l)].

The following theorem shows that either condition guarantees that a mechanism is SP-L.

Theorem 1. If a mechanism is EF-TB (and in particular if it is EF), then it is SP-L.
The maximum possible gain from misreporting converges to 0 at a rate of n−

1
2

+ε for EF

9Both approximate CEEI and deferred acceptance include as a special case the random serial dictatorship
mechanism, which Bogomolnaia and Moulin (2001) show is not envy-free.

10This definition is for anonymous mechanisms. The definition for semi-anonymous mechanisms, which is
needed for deferred acceptance, is contained in Supplementary Appendix C. The semi-anonymous version
of the definition can also be used for school choice problems in which there are multiple groups of students
with different priority classes (e.g., sibling priority or walk-zone priority).
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mechanisms, and n−
1
4

+ε for EF-TB mechanisms. Formally, if a mechanism is EF (EF-TB),
then given µ ∈ ∆̄T and ε > 0 there exists C > 0 such that, for all ti, t′i and n, the gain from
deviating,

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)],

is bounded above by
C · n−

1
2

+ε (C · n−
1
4

+ε).

The theorem shows that either condition can be used to classify new or existing mecha-
nisms as SP-L. It also gives reasonable rates of convergence for the maximum possible gain
from manipulating a mechanism.

The proof of the theorem for the EF-TB case builds upon the argument for the EF case,
by showing that EF-TB mechanisms have small amounts of envy before lotteries are drawn
(Lemma I.2). This is accomplished with three basic ideas. First, how much player i envies
player j prior to the lottery draw equals the average envy by all type ti players towards type
tj players, as a consequence of anonymity. Second, it is possible to bound this average envy,
after a given lottery draw l, by how evenly distributed the lottery numbers in the vector l are.
Intuitively, if players of types ti and tj receive evenly distributed lottery numbers, average
envy has to be small. The final step is an application of a probabilistic bound known as the
Dvoretzky–Kiefer–Wolfowitz inequality, which guarantees that lottery numbers are typically
very evenly distributed.

4.2 Relationship to the Theoretical Literature on Large Markets

The SP-L column of Table 1 organizes a large literature demonstrating the approximate
incentive compatibility of specific mechanisms in large markets. Our results show that a
number of mechanisms for which the literature established approximate incentive compati-
bility results are SP-L. This includes Walrasian mechanisms (Roberts and Postlewaite, 1976
and Jackson and Manelli, 1997), double auctions (Rustichini et al., 1994 and Cripps and
Swinkels, 2006), uniform-price auctions (Swinkels, 2001), deferred acceptance mechanisms
(Immorlica and Mahdian, 2005 and Kojima and Pathak, 2009), and the probabilistic serial
mechanism (Kojima and Manea, 2010). We also obtain new results on the approximate CEEI
(Budish, 2011), the Hylland and Zeckhauser (1979), and the generalized Hylland-Zeckhauser
(Budish et al., 2013) pseudomarket mechanisms, whose large-market incentive properties
had not previously been formally studied.

The single concept of SP-L and Theorem 1 classifies all of these mechanisms. In contrast,
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the prior literature has employed different notions of approximate incentive compatibility
and different analysis techniques, tailored for each mechanism.11 Of course, analyses that
are tailored to specific mechanisms can yield a more nuanced understanding of the exact
forces pushing players away from truthful behavior in finite markets, as in the first-order
condition analysis of Rustichini et al. (1994) or the rejection chain analysis of Kojima and
Pathak (2009).

4.3 Relationship to Empirical Literature on Manipulability

For each of the manipulable in the large mechanisms in Table 1, there is explicit empirical
evidence that participants strategically misreport their preferences in practice. Furthermore,
misreporting harms design objectives such as efficiency or fairness. In this section we briefly
review this evidence.12

Consider first multi-unit auctions for government securities. Empirical analyses have
found considerable bid shading in discriminatory auctions (Hortaçsu and McAdams, 2010),
but negligible bid shading in uniform-price auctions, even with as few as 13 bidders (Kastl,
2011; Hortaçsu et al. (2015)). Friedman (1991) argued that the need to play strategically
in pay-as-bid auctions reduces entry of less sophisticated bidders, giving dealers a sheltered
market that facilitates collusion. In uniform-price auctions, by contrast, “You do not have
to be a specialist” to participate, since all bidders pay the market-clearing price. Consistent
with Friedman’s view, Jegadeesh (1993) shows that pay-as-bid auctions depressed revenues
to the US Treasury during the Salomon Squeeze in 1991, and Malvey and Archibald (1998)

11This note elaborates on the different concepts used in the literature. Roberts and Postlewaite (1976) ask
that truthful reporting is ex-post approximately optimal for all opponent reports where equilibrium prices
vary continuously with reports. Rustichini et al. (1994) study the exact Bayes-Nash equilibria of double
auctions in large markets, and bound the rate at which strategic misreporting vanishes with market size.
Swinkels (2001) studies both exact Bayes-Nash equilibria and ε-Bayes-Nash equilibria of the uniform-price
and pay-as-bid auctions. Kojima and Pathak (2009) study ε-Nash equilibria of the doctor-proposing deferred
acceptance algorithm assuming complete information about preferences on the hospital side of the market
and incomplete information about preferences on the doctor side of the market. In an appendix they also
consider ε-Bayes-Nash equilibria, in which there is incomplete information about preferences on both sides
of the market. Kojima and Manea (2010) show that probabilistic serial satisfies exact SP, without any
modification, in a large enough finite market. Budish (2011) shows that approximate CEEI satisfies exact
SP in a continuum economy.

12We note that even for SP mechanisms preference reporting is not perfect. Rees-Jones (2015) provides
survey evidence of misreporting in the US medical resident match on the doctor side of the market (for
which truthful reporting is a dominant strategy), which he attributes in part to students misunderstanding
the strategic environment (see also Hassidim et al., 2015). Laboratory studies have also found misreporting
in SP mechanisms, though these experiments find significantly lower rates of misreporting in SP mechanisms
than in easily manipulable mechanisms (Chen and Sönmez, 2006 and Featherstone and Niederle, 2011) and
significantly lower rates of misreporting when it is obvious to participants why the SP mechanism is SP (Li,
2015).
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find that the US Treasury’s adoption of uniform-price auctions in the mid-1990s broadened
participation. Cross-country evidence is also consistent with Friedman’s argument, as Bren-
ner et al. (2009) find a positive relationship between a country’s using uniform-price auctions
and indices of ease of doing business and economic freedom, whereas pay-as-bid auctions are
positively related with indices of corruption and of bank-sector concentration.

Next, consider the Boston mechanism for school choice. Abdulkadiroğlu et al. (2006) find
evidence of a mix of both sophisticated strategic misreporting and unsophisticated naive
truthtelling; see also recent empirical work by Agarwal and Somaini (2014) and Hwang
(2014). Sophisticated parents strategically misreport their preferences by ranking a relatively
unpopular school high on their submitted preference list. Unsophisticated parents, on the
other hand, frequently play a dominated strategy in which they waste the highest positions
on their rank-ordered list on popular schools that are unattainable for them. In extreme
cases, participants who play a dominated strategy end up not receiving any of the schools
they ask for.

Next, consider the mechanisms used in practice for the multi-unit assignment problem
of course allocation. In the bidding points auction, Krishna and Ünver (2008) use both field
and laboratory evidence to show that students strategically misreport their preferences, and
that this harms welfare. Budish (2011) provides additional evidence that some students
get very poor outcomes under this mechanism; in particular students sometimes get zero
of the courses they bid for. In the Harvard Business School draft mechanism, Budish and
Cantillon (2012) use data consisting of students’ stated preferences and their underlying
true preferences to show that students strategically misreport their preferences. They show
that misreporting harms welfare relative both to a counterfactual in which students report
truthfully, and relative to a counterfactual in which students misreport, but optimally. They
also provide direct evidence that some students fail to play best responses, which supports the
view that Bayes-Nash equilibria are less robust in practice than dominant-strategy equilibria.

For labor market clearinghouses, Roth (1990, 1991, 2002) surveys a wide variety of evi-
dence that shows that variations on priority matching mechanisms perform poorly in practice,
while variations on Gale and Shapley’s deferred acceptance algorithm perform well. Roth
emphasizes that the former are unstable under truthful play whereas the latter are stable
under truthful play. By contrast, we emphasize that the former are not SP-L whereas the
latter are SP-L.
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5 SP-L is Approximately Costless in Large Markets Rel-

ative to Bayes-Nash

In this section we will show that, in large markets, SP-L is in a well-defined sense approx-
imately costless to impose relative to Bayes-Nash incentive compatibility. The exception
is that there can be a large cost if the Bayes-Nash mechanism is very sensitive to agents’
beliefs, but this itself is likely to be undesirable in practical market design settings.

5.1 Preliminaries

It will be useful to extend the function Φn linearly to distributions over vectors of actions.
Given a distribution m̄ ∈ ∆(An) over vectors of actions, let

Φn(m̄) =
∑
a∈An

m̄(a) · Φn(a). (5.1)

Likewise, given an action ai and a distribution m̄ ∈ ∆(An−1) over n− 1 actions, let

Φn
i (ai, m̄) =

∑
a−i∈An−1

m̄(a−i) · Φn
i (ai, a−i)

and given distributions m̂,m ∈ ∆A let

φ∞(m̂,m) =
∑
ai∈A

m̂(ai) · φ∞(ai,m)

Given a mechanism {(Φn)N, A}, a strategy σ is defined as a map from T to ∆A. Given
a strategy σ and a vector of types t, let σ(t) ∈ ∆(An) denote the associated distribution over
vectors of actions. Given a strategy σ and a probability distribution over types µ ∈ ∆T , let
σ(µ) ∈ ∆A denote the distribution over actions induced by strategy σ when player types are
drawn according to µ.

Definition 7. Given a mechanism {(Φn)N, A} with limit φ∞(·, ·), and a probability distribu-
tion over types µ ∈ ∆T , the strategy σ∗µ : T → ∆A is a limit Bayes-Nash equilibrium at

prior µ if, for all ti ∈ T and a′i ∈ A:

uti [φ
∞(σ∗µ(ti), σ

∗
µ(µ))] ≥ uti [φ

∞(a′i, σ
∗
µ(µ))].

Typically, a mechanism’s Bayes-Nash equilibria vary with the prior. For instance, in
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a pay-as-bid auction how much bidders shade their bid in equilibrium varies with the dis-
tribution of bidders’ values, and in the Boston mechanism how students misreport their
preferences in equilibrium depends on the distribution of students’ preferences. We define a
family of limit equilibria as a set containing a limit equilibrium for each possible prior.13

Definition 8. Given a mechanism {(Φn)N, A} with limit φ∞(·, ·), we say that (σ∗µ)µ∈∆T is a
family of limit Bayes-Nash equilibria if, for each µ ∈ ∆T , the strategy σ∗µ(·) is a limit
BNE at prior µ.

Our continuity condition is defined on a family of limit equilibria.

Definition 9. Consider a mechanism {(Φn)N, A} with limit φ∞(·, ·), and a family of limit
Bayes-Nash equilibria (σ∗µ)µ∈∆T . The family of equilibria is continuous at prior µ0 ∈ ∆̄T if,
given ε > 0, there exists n0 and a neighborhood N of µ0 such that, for any n ≥ n0, ti ∈ T ,
t−i ∈ T n−1 where emp[ti, t−i] ∈ N , and µ, µ′ ∈ N , we have:

∥∥Φn
i (σ∗µ(ti), σ

∗
µ(t−i))− Φn

i (σ∗µ′(ti), σ
∗
µ′(t−i))

∥∥ < ε.

The family of equilibria is continuous if it is continuous at every full support prior.

In words, a family of equilibria is continuous if a small change in the prior µ has only a
small effect on agent ti’s outcome in a large enough market. We show below in Section 6 that
the Boston mechanism has a continuous family of equilibria (Proposition 1). In Section 7.1
and Supplementary Appendix B we also consider a weaker notion of continuity that allows
for points of discontinuity so long as they are in a certain sense knife-edge. The theorem
goes through under this condition as well but in a slightly weaker form.

5.2 Construction Theorem

We now establish that, given a mechanism with a continuous family of Bayes-Nash equilibria,
there exists an SP-L mechanism that implements approximately the same outcomes as the
original mechanism.

Theorem 2. Given any mechanism {(Φn)N, A} with a continuous family of limit Bayes-
Nash equilibria (σ∗µ)µ∈∆T , there exists a direct, SP-L mechanism {(F n)N, T} such that, in the
large market limit, for any prior, truthful play of the direct mechanism produces the same

13In an earlier version of this paper we showed that the analysis goes through essentially unchanged if we
use a family of exact Bayes-Nash equilibria in large finite markets rather than a family of limit Bayes-Nash
equilibria. Please see Appendix C.2 of Azevedo and Budish (2013).
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outcomes as equilibrium play of the original mechanism. Formally, letting f∞ denote the
limit of the direct mechanism, for any full-support prior µ and any type ti we have

f∞(ti, µ) = φ∞(σ∗µ(ti), σ
∗
µ(µ)).

Proof Sketch. The proof of Theorem 2 is by construction. We provide a detailed sketch as
follows, with full details contained in Appendix 9.

Suppose in a market of size n the agents report types t = (t1, . . . , tn). Our constructed
mechanism calculates the empirical distribution of reports, emp[t], and then plays the limit
Bayes-Nash equilibrium of the original mechanism associated with this empirical distribution:

F n(t) = Φn(σ∗emp[t](t)). (5.2)

In words, F n plays action σ∗emp[t](ti) for agent i who reports ti, where emp[t] is not the
true distribution of agents’ types µ0 (which is not known to the mechanism) but rather the
empirical distribution of agents’ reported types. Intuitively, F n acts as a proxy agent playing
the original mechanism Φn on each agent’s behalf, and uses a strategy that would be the
limit Bayes-Nash equilibrium in a world in which the empirical distribution of agents’ reports
were in fact the true distribution of agents’ preferences, and, additionally, this distribution
was common knowledge.

To prove that this constructed mechanism produces outcomes under truthful play that
coincide with equilibrium play of the original mechanism, suppose that the prior is µ0 and
that all agents report truthfully to the constructed mechanism. In a finite market of size n
there will be sampling error, so the realized empirical will be, say, µ̂. Agent i who reports
ti thus receives F n

i (ti, t−i) = Φn
i (σ∗µ̂(ti), σ

∗
µ̂(t−i)). As the market grows large, the realized

distribution of µ̂ converges almost surely to the true distribution µ0, by the law of large
numbers. Hence, by continuity, agent i’s allocation is converging to

f∞(ti, µ0) = φ∞(σµ0(ti), σµ0(µ0)).

As required, this is exactly what agent i would receive under the original mechanism, in the
large-market limit, in the Bayes-Nash equilibrium corresponding to the true prior µ0.

To prove that the constructed mechanism is SP-L, suppose that the agents other than i
misreport their preferences, according to some distribution m 6= µ0. As before, in a finite
market of size n, there will be sampling error, so the realized empirical will be, say, m̂.
Agent i will thus receive F n

i (ti, t
′
−i) = Φn

i (σ∗m̂(ti), σ
∗
m̂(t′−i)). As the market grows large, the
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distribution of m̂ will converge in probability to m, so, by continuity, agent i’s allocation is
converging to

f∞(ti,m) = φ∞(σm(ti), σm(m)).

This is what agent i would receive under the original mechanism, in the large-market limit,
in the Bayes-Nash equilibrium corresponding to prior m. Even though the other agents
are systematically misreporting their preferences, it is optimal for agent i to tell the truth,
because the other agents are acting as if their preferences are distributed according to m,
and then playing a strategy that is converging to the Bayes-Nash equilibrium corresponding
to m. Thus agent i also wants to play the Bayes-Nash equilibrium strategy corresponding
to m – which is exactly what happens when she reports her preferences truthfully to the
constructed mechanism.14 Hence, in the limit, it is optimal for i to report truthfully for any
distribution of opponent reports, i.e., the constructed mechanism is SP-L.

Relationship to the Revelation Principle The construction is related to the traditional
Bayes-Nash direct revelation mechanism construction (Myerson, 1979). In a traditional
Bayes-Nash direct revelation mechanism, the mechanism designer and participants have a
common knowledge prior about payoff types, say µ0. The mechanism announces a Bayes-
Nash equilibrium strategy σ∗µ0(·), and plays σ∗µ0(ti) on behalf of an agent who reports ti.
Truthful reporting is a Bayes-Nash equilibrium.

In contrast, our constructed mechanism does not depend on a prior. Instead, the mech-
anism infers a prior from the empirical distribution of agents’ play (cf. Segal (2003); Baliga
and Vohra (2003)). If agents indeed play truthfully, this inference is correct in the limit.
But if the agents misreport, so that the empirical m̂ is very different from the prior µ0,
our mechanism adjusts each agent’s play to be the Bayes-Nash equilibrium play in a world
where the prior was in fact m̂. As a result, an agent who reports her preferences truthfully
remains happy to have done so even if the other agents misreport, unlike in a traditional
Bayes-Nash direct revelation mechanism, and our mechanism is SP-L rather than Bayes-
Nash. Moreover, our mechanism is prior free and consistent with the Wilson doctrine, unlike
a traditional Bayes-Nash direct revelation mechanism.

14Observe that this step of the argument requires the private values assumption. It is important that i
does not care per se about the other players’ true types.
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6 Application: The Boston Mechanism

The school choice literature has debated the desirability of the commonly used Boston mech-
anism for student assignment. While the mechanism has good efficiency properties, it has
been criticized because it gives students strong incentives to misreport preferences. This
section applies Theorem 2 to show that there exists a mechanism that produces the same
outcomes as the Boston mechanism, but is SP-L. We begin by giving a formal definition of
the Boston mechanism and our results, and then discuss how this contributes to the debate
in the literature.

6.1 Definition of the Boston Mechanism

Denote the set of schools by X0 = S ∪ {∅}. In a market of size n, there are bqs · nc seats
available in school s, where qs ∈ (0, 1) denotes the proportion of the market that s can
accommodate and b·c is the floor function. It is assumed that X0 includes a null school ∅ in
excess supply. An agent of type ti ∈ T has a strict utility function uti over X0. The utility of
the null school is normalized to 0. In particular, all agents strictly prefer any of the proper
schools to the null school.

We consider a simplified version of the Boston mechanism with a single round. The
action space is the set of proper schools A = S, so that each student points to a school.
If the number of students pointing to school s is lower than the number of seats, then all
of those students are allocated to school s. If there are more students who point to s than
its capacity, then students are randomly rationed, and those who do not obtain a seat in s
are allocated to the null school. Formally, given a vector of reports a, the allocation Φn

i (a)

assigns i to school ai with probability

min{ bqai · nc
empai [a] · n

, 1},

and to the null school with the remaining probability. Consequently, the limit mechanism is

φ∞(s,m) = min{ qs
ms

, 1} · s,

which denotes receiving school s with the probability min{ qs
ms
, 1}, which we term the prob-

ability of acceptance to school s, and school ∅ with the remaining probability.
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6.2 Results

Let Σ∗(µ) denote the set of limit Bayes-Nash equilibria of the Boston mechanism given prior
µ. Let P ∗(µ) denote the set of vectors of probabilities of acceptance over all equilibria in
Σ∗(µ) . The next Proposition establishes existence and some regularity properties of the
equilibria of the Boston mechanism.

Proposition 1 (Structure of the set of limit equilibria). The correspondence Σ∗(µ) is non-
empty, convex-valued and continuous in ∆̄T . The correspondence P ∗(µ) is non-empty,
single-valued, and continuous in ∆̄T .

Given a prior µ, the Boston mechanism may have multiple equilibria.15 Nevertheless,
the probability of acceptance to each school is the same in any equilibrium because P ∗(·)
is single-valued. The intuition is that lowering the probability of acceptance to a school
weakly reduces the set of students who would optimally point to it, and weakly increases
the set of students who would point to other schools. Therefore, an argument similar to
uniqueness arguments in competitive markets with gross substitutes shows that equilibrium
probabilities of acceptance are unique. Moreover, equilibrium delivers well-behaved outcomes
because probabilities of acceptance vary continuously.

Together, Proposition 1 and Theorem 2 yield the following corollary:

Corollary 1 (SP-L implementation of the Boston mechanism). The Boston mechanism
has a continuous family of limit Bayes-Nash equilibria. For any such family (σ∞µ )µ∈∆T , the
direct mechanism constructed according to equation (5.2) is SP-L, and, in the large market
limit, for any prior, truthful play of the direct mechanism produces the same outcomes as
Bayes-Nash equilibrium play of the Boston mechanism.

Interestingly, the SP-L mechanism that we construct according to (5.2) closely resembles
the Hylland and Zeckhauser (1979) pseudo-market mechanism for single-unit assignment.16

In our constructed mechanism, agents report their types, the mechanism computes the equi-
librium market-clearing probabilities P ∗s associated with the distribution of reports, and each
student points to their most-preferred school given their reported types and the computed
probabilities. In Hylland and Zeckhauser (1979)’s mechanism, agents report their types, the

15To see why multiple equilibria are possible, consider for example an equilibrium where types t1 and t2
both point with probability 1/2 to each school s1 and s2. In such case, there are other equilibria where
types t1 and t2 change the proportion in which they point to each school in opposite directions, keeping the
probabilities of acceptance the same.

16See also Miralles (2009), which contains a very nice description of the connection between the Boston
mechanism’s Bayes-Nash equilibria and Hylland and Zeckhauser (1979).
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mechanism computes equilibrium market-clearing prices p∗s given the distribution of reports,
and each student purchases the lottery they like best given their reported types and the
computed prices.

6.3 Discussion: the Debate over the Boston Mechanism

Our analysis offers a new perspective to an ongoing market design debate concerning the
Boston mechanism. The earliest papers on the Boston mechanism, Abdulkadiroğlu and
Sönmez (2003) and Abdulkadiroğlu et al. (2006), criticized the mechanism on the grounds
that it is not SP, and proposed that the Gale-Shapley deferred acceptance algorithm be
used instead.17 These papers had a major policy impact as they led to the Gale-Shapley
algorithm’s eventual adoption for use in practice (cf. Roth, 2008).

A second generation of papers on the Boston mechanism, Abdulkadiroğlu et al. (2011);
Miralles (2009); Featherstone and Niederle (2011), made a more positive case for the mecha-
nism. They argued that while the Boston mechanism is not SP, it has Bayes-Nash equilibria
that are attractive. In particular, it has Bayes-Nash equilibria that yield greater student
welfare than do the dominant strategy equilibria of the Gale-Shapley procedure. Perhaps,
these papers argue, the earlier papers were too quick to dismiss the Boston mechanism.

However, these second-generation papers rely on students being able to reach the attrac-
tive Bayes-Nash equilibria. This raises several potential questions: is common knowledge
a reasonable assumption? Will students be able to calculate the desired equilibrium? Will
unsophisticated students be badly harmed?

Our construction shows that, in a large market, it is possible to obtain the attractive
welfare properties of the Bayes-Nash equilibria identified by these second-generation papers
on the Boston mechanism, but without the robustness problems associated with Bayes-Nash
mechanisms.

We make three caveats regarding whether our constructed mechanism is appropriate for
practical use. First, participants may find that a proxy mechanism like ours, or similar mech-
anisms like the Hylland and Zeckhauser (1979) pseudomarket mechanism, are too difficult to
understand (i.e., opaque). Second, reporting von Neumann-Morgenstern preferences accu-
rately may be difficult for participants. Therefore, with respect to these first two caveats, to
take the proxy mechanism seriously for practice one needs to explain it in a transparent way,
and to design and validate a user interface for accurately reporting preferences. While these

17In two-sided matching, the Gale-Shapley algorithm is strategy proof for the proposing side of the market
and SP-L for the non-proposing side of the market. In school choice only the student side of the market is
strategic, with schools being non-strategic players whose preferences are determined by public policy.
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are important issues, they are addressable. In fact the issues are similar to those dealt with
in Budish and Kessler’s (2015) practical implementation of an MBA course allocation mech-
anism. The third caveat is that there is an ongoing empirical debate on the magnitude of the
welfare gains at stake. That is, on the difference in welfare between Bayes-Nash equilibrium
play of the Boston mechanism and truthful play of the Gale-Shapley mechanism (Agarwal
and Somaini, 2014; Casalmiglia et al., 2014; Hwang, 2014). If these gains are small, then the
simpler Gale-Shapley mechanism is likely more desirable.

7 Extensions and Discussion

7.1 Relaxing Continuity

Theorem 2 assumes continuity of the given Bayes-Nash mechanism’s family of equilibria.
While this assumption has an intuitive appeal in that it asks that a mechanism’s outcomes
not be too sensitive to tiny changes in the prior, it is a strong assumption. Many well-known
mechanisms violate it. For example, in pay-as-bid and uniform-price auctions, even though
a small change in the prior typically has only a small effect on agents’ bids, this small change
in bids can have a large (i.e., discontinuous) effect on the number of units some bidder wins
or the market-clearing price.

In Supplementary Appendix B we show that a weaker version of Theorem 2 obtains under
a condition that we call quasi-continuity. Quasi-continuity allows for a family of equilibria to
have discontinuities, with respect to both the prior on which agents’ strategies are based and
the empirical distribution of reports, but requires that the discontinuities are in a certain
sense knife-edge. Roughly, any discontinuity is surrounded by regions in which outcomes
are continuous. Under this condition, the conclusion of the theorem (Theorem B.1) is as
follows. If the mechanism is continuous at a given prior µ0, then, as before, there exists an
SP-L mechanism that gives agents the same outcomes as the given Bayes-Nash mechanism,
in the large-market limit. If the mechanism is not continuous at µ0, then there exists an
SP-L mechanism that gives agents a convex combination of the outcomes they would obtain
under the original mechanism, for a set of priors in an arbitrarily small neighborhood of µ0.

A question that remains open for future research is to fully characterize the conditions
under which there is no gap between Bayes-Nash and SP-L in large markets. We have
counterexamples that fail quasi-continuity in which our constructed mechanism does not
approximate the original Bayes-Nash mechanism, even for the weaker form of approximation
described above (cf. Supplementary Appendix B.2). However, the counterexamples that we
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have found are far from market design applications, and also the fact that our construction
leaves a gap between Bayes-Nash and SP-L only proves that our method of proof does not
work, it does not prove that there is a gap. It would also be desirable to obtain results
analogous to Theorems 2 and B.1 in which the continuity conditions are defined not on
family of equilibria, but on mechanisms themselves.

Given these open questions, we do not see Theorems 2 and B.1 as providing definitive
proof that there is never an advantage to using Bayes-Nash over SP-L in large markets.
Rather, we see the results as suggesting that, for the purposes of practical market design, a
researcher is justified searching in the space of SP-L mechanisms rather than broadening her
search to include Bayes-Nash. For there to be a meaningful gain to using Bayes-Nash over
SP-L in large markets, the Bayes-Nash mechanism must fail quasi-continuity, which means
that its outcomes are extremely sensitive to agents’ beliefs and reports. In addition, the
researcher must believe the usual conditions required for Bayes-Nash equilibrium, such as
common knowledge and strategic sophistication, which seems unrealistic in the context of a
highly discontinuous mechanism.

7.2 Semi-Anonymity

Our analysis focuses on mechanisms that are anonymous, meaning that each agent’s outcome
is a symmetric function of her own action and the distribution of all actions. In Supplemen-
tary Appendix C we generalize key definitions and results to the case of semi-anonymous
mechanisms, as defined in Kalai (2004). A mechanism is semi-anonymous if each agent be-
longs to one of a finite number of groups, and her outcome is a symmetric function of her
own action, her group, and the distribution of actions within each group. This generaliza-
tion is useful for two reasons. First, it allows our analysis to cover more mechanisms. For
instance, double auctions and matching markets are naturally modeled as semi-anonymous
mechanisms, as are school choice mechanisms if there are multiple priority classes. Second,
it allows results and concepts stated for i.i.d. distributions to be extended to more general
distributions.

7.3 Related Literature

Our paper is related to several lines of literature. First, there is a large theory literature
that has studied how market size can ease incentive constraints for specific mechanisms. We
discussed this literature in detail in Section 4.2. It is important to highlight that the aim
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of our paper is quite different from, and complementary to, this literature. Whereas papers
such as Roberts and Postlewaite (1976) provide a defense of a specific pre-existing mechanism
based on its approximate incentives properties in large markets, our paper aims to justify
SP-L as a general desideratum for market design. In particular, our paper can be seen as
providing justification for focusing on SP-L when designing new mechanisms. Another point
of difference versus this literature is that our criterion itself is new; see fn. 11 for full details
of the approximate incentives criteria used in this prior literature.

Second, there is an empirical literature that studies how participants behave in real-world
non-SP market designs. One example is Abdulkadiroğlu et al. (2006), who show, in the con-
text of the school choice system in Boston, that sophisticated students strategically misreport
their preferences, while unsophisticated students frequently play dominated strategies; see
Hwang (2014) and Agarwal and Somaini (2014) for related studies. Another example is
Budish and Cantillon (2012), who show that students at Harvard Business School strategi-
cally misreport their preferences for courses, often sub-optimally, and that this misreporting
harms welfare relative to both truthful play and optimal equilibrium behavior. We discuss
this literature in more detail in Section 4.3. This literature supports the SP-L concept,
because all of the examples in which there is evidence of harm from misreporting involve
mechanisms that not only are not SP, but are not even SP-L.

Third, our paper is related to the literature on the role of strategy-proofness in practical
market design. Wilson (1987) famously argued that practical market designs should aim to
be robust to agents’ beliefs, and Bergemann and Morris (2005) formalized the sense in which
SP mechanisms are robust in the sense of Wilson. Several recent papers have argued that SP
can be viewed as a design objective and not just as a constraint. Papers on this theme include
Abdulkadiroğlu et al. (2006), Abdulkadiroğlu et al. (2009), Pathak and Sönmez (2008), Roth
(2008), Milgrom (2011) Section IV, Pathak and Sönmez (2013) and Li (2015). Our paper
contributes to this literature by showing that our notion of SP-L approximates the appeal
of SP, while at the same time being considerably less restrictive. Also, the distinction we
draw between mechanisms that are SP-L and mechanisms that are manipulable even in large
markets highlights that many mechanisms in practice are manipulable in a preventable way.

Last, our paper is closely conceptually related to Parkes et al. (2001), Day and Mil-
grom (2008), Erdil and Klemperer (2010), Carroll (2013) and especially Pathak and Sönmez
(2013). Each of these papers – motivated, like us, by the restrictiveness of SP – proposes
a method to compare the manipulability of non-SP mechanisms based on the magnitude of
their violation of SP. Parkes et al. (2001), Day and Milgrom (2008) and Erdil and Klemperer
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(2010) focus on the setting of combinatorial auctions. They propose cardinal measures of a
combinatorial auction’s manipulability based, respectively, on Euclidean distance from Vick-
rey prices, the worst-case incentive to misreport, and marginal incentives to misreport. Each
of these papers then seeks to design a combinatorial auction that minimizes manipulability
subject to other design objectives. Carroll (2013) focuses on the setting of voting rules. Like
Day and Milgrom (2008), he proposes a worst-case measure of manipulability, though, like
us, he considers incentives to manipulate from an ex-interim rather than ex-post perspec-
tive. He then compares voting rules based on the rate at which worst-case incentives to
manipulate converge to zero. Pathak and Sönmez (2013), most similarly to us, use a general
mechanism design environment that encompasses a wide range of market design problems.
They propose the following partial order over non-SP mechanisms: mechanism ψ is said to
be more manipulable than mechanism ϕ if, for any problem instance where ϕ is manipula-
ble by at least one agent, so too is ψ. This concept helps to explain several recent policy
decisions in which school authorities in Chicago and England switched from one non-SP
mechanism to another. This concept also yields an alternative formalization of Milton Fried-
man’s argument for uniform-price auctions over pay-as-bid auctions: whereas we show that
uniform-price auctions are SP-L and pay-as-bid auctions are not, Pathak and Sönmez (2013)
show that the pay-as-bid auction is more manipulable than the uniform-price auction ac-
cording to their partial order. We view our approach as complementary to these alternative
approaches. Two important advantages of our approach are that it yields the classification
of non-SP mechanisms as displayed in Table 1, and yields an explicit second-best criterion
for designing new mechanisms, namely that they be SP-L.

8 Conclusion

A potential interpretation of our results is that they suggest that SP-L be viewed as a
necessary condition for good design in large anonymous and semi-anonymous settings. Our
criterion provides a common language for criticism of mechanisms ranging from Friedman’s
(1960) criticism of pay-as-bid auctions, to Roth’s (1990; 1991) criticism of priority-matching
mechanisms, to Abdulkadiroğlu and Sönmez’s (2003) criticism of the Boston mechanism for
school choice. The issue is not simply that these mechanisms are manipulable, but that
they are manipulable even in the large-market limit; even the kinds of agents we think of as
“price takers” will want to misreport their preferences. The evidence we review in Section 4
suggests that manipulability in the large is a costly problem in practice, whereas the record
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for SP-L mechanisms, though incomplete, is positive. Our result in Section 5 then indicates
that manipulability in the large can be avoided at approximately zero cost. Together, these
results suggest that using a mechanism that is manipulable in the large is a preventable
design mistake.

Whether SP-L can also be viewed as sufficient depends upon the extent to which the
large-market abstraction is compelling in the problem of interest. Unfortunately, even with
convergence rates such as those stated in Theorem 1, there rarely is a simple bright-line
answer to the question of “how large is large”.18 But – just as economists in other fields
instinctively understand that there are some contexts where it is necessary to explicitly
model strategic interactions, and other contexts where it may be reasonable to assume price-
taking behavior – we hope that market designers will pause to consider whether it is necessary
to restrict attention to SP mechanisms, or whether SP-L may be sufficient for the problem
at hand.

18Even in theoretical analyses of the convergence properties of specific mechanisms, rarely is the analysis
sufficient to answer the question of, e.g., “is 1000 participants large?” Convergence is often slow or includes
a large constant term. A notable exception is double auctions. For instance, Rustichini et al. (1994) are
able to show, in a double auction with unit demand and uniformly distributed values, that 6 buyers and
sellers is large enough to approximate efficiency to within one percent. Of course, in any specific context,
the analyst’s case that the market is large can be strengthened with empirical or computational evidence;
see, for instance, Roth and Peranson (1999).
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9 Appendix: Proofs

9.1 Proof of Theorem 1

We first define notation that will be used in the proof of Theorem 1. Given µ̂ ∈ ∆T , let
Φn
i (ti|µ̂) denote the bundle Φn

i (ti, t−i), where t−i is an arbitrary vector of n − 1 types such
that emp[ti, t−i] = µ̂, if such t−i exists.19 If there is no such t−i, which is the case for
example if µ̂(ti) = 0, then Φn

i (ti|µ̂) is defined as the random bundle placing equal weight on
all outcomes in X0. Note that bundles Φn

i (ti|µ̂) which do not correspond to any t−i do not
play any role in the results. They are defined only to simplify the notation in the proof below.
Let Pr{µ̂|t′i, µ, n} be the probability that the empirical distribution of (t′i, t−i) is µ̂, given a
fixed t′i and that the vector t−i of n− 1 types is drawn i.i.d. according to µ. Throughout the
proof we consider sums over infinite sets, but where only a finite number of the summands
are nonzero. We adopt the convention that these are finite sums of only the positive terms.

Fix a prior µ ∈ ∆̄T , market size n, and consider the utility a type ti agent expects to
obtain if she reports t′i. This equals

uti [φ
n
i (t′i, µ)] =

∑
µ̂∈∆T

Pr{µ̂|t′i, µ, n} · uti [Φn
i (t′i|µ̂)].

The interim gain from misreporting as type t′i instead of type ti equals

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] (9.1)

=
∑
µ̂∈∆T

Pr{µ̂|t′i, µ, n} · uti [Φn
i (t′i|µ̂)]−

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · uti [Φn
i (ti|µ̂)].

We can reorder the terms on the RHS of (9.1) as

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · (uti [Φn
i (t′i|µ̂)]− uti [Φn

i (ti|µ̂)])︸ ︷︷ ︸
Envy = Gain from reporting t′i holding fixed µ̂

(9.2)

+
∑
µ̂∈∆T

(Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}) · uti [Φn
i (t′i|µ̂)]︸ ︷︷ ︸

Gain from affecting µ̂

.

That is, the gain from misreporting can be decomposed into two terms. The first term

19Recall that anonymity implies that, if t−i and t′−i have the same empirical distribution, then Φni (ti, t−i) =
Φni (ti, t

′
−i).
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is the expected gain, over all possible empirical distributions µ̂, of reporting t′i instead of
ti, holding fixed the empirical distribution of types. This quantity equals how much type ti
players envy type t′i players, in expectation. The second term is the sum, over all possible
empirical distributions µ̂, of how much changing the report from ti to t′i increases the like-
lihood of µ̂, times the utility of receiving the bundle given to a type t′i agent. That is, how
much player i gains by manipulating the expected empirical distribution of reports µ̂. Our
goal is to show that, if a mechanism is EF or EF-TB, then both of these terms are bounded
above in large markets, with the bounds converging to zero fast enough to yield the overall
convergence rates stated in Theorem 1.

The proof is based on two lemmas. The first lemma bounds the effect that a single player
can have on the probability distribution of the realized empirical distribution of types. This
will allow us to bound the second term in expression (9.2).

Lemma I.1. Define, given types ti and t′i, distribution of types µ ∈ ∆T , and market size n,
the function

∆P (ti, t
′
i, µ, n) =

∑
µ̂∈∆T

|Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}|. (9.3)

Then, for any µ ∈ ∆̄T , and ε > 0, there exists a constant C∆P > 0 such that, for any ti, t′i
and n we have

∆P (ti, t
′
i, µ, n) ≤ C∆P · n−1/2+ε.

The second lemma will help us bound the first term in expression (9.2). Note that this
term is always weakly negative for EF mechanisms, by definition, but that it can be positive
for EF-TB mechanisms. The lemma provides a bound on the maximum amount of envy in
an EF-TB mechanism, based on the minimum number of agents of a given type.

Lemma I.2. Fix an EF-TB mechanism {(Φn)N, T}. Define, given types ti and t′i, empirical
distribution of types µ̂ ∈ ∆T , and market size n, the function

E(ti, t
′
i, µ̂, n) = uti [Φ

n
i (t′i|µ̂)]− uti [Φn

i (ti|µ̂)],

which measures the envy of ti for t′i. Then, for any ε > 0, there exists CE such that, for all
ti, t

′
i ∈ T , n, and µ̂ ∈ ∆̄T such that µ̂ corresponds to the empirical distribution of types for

some vector in T n, we have

E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{µ̂(τ) · n}−1/4+ε. (9.4)
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The proofs of Lemmas I.1 and I.2 are given below. We now use the two lemmas to prove
Theorem 1

Proof of Theorem 1, Case 1: EF mechanisms. Applying the notation of Lemmas I.1 and I.2
to the terms in equation (9.2), and recalling that utility is bounded above by 1, we obtain
the bound

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) (9.5)

+∆P (ti, t
′
i, µ, n).

If a mechanism is EF and µ̂(t′i) > 0, i.e., the empirical µ̂ has at least one report of t′i,
then the first term in the RHS of inequality (9.5) is nonpositive. Taking any ε > 0, and
using Lemma I.1 to bound the ∆P term in the RHS of inequality (9.5) we have that there
exists C∆P > 0 such that

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤ Pr{µ̂(t′i) = 0|ti, µ, n} (9.6)

+C∆P · n−1/2+ε.

Since the probability that µ̂(t′i) = 0 goes to 0 exponentially with n, we have the desired
result.

Proof of Theorem 1, Case 2: EF-TB mechanisms. We begin by bounding the envy term in
inequality (9.5), which is weakly negative for EF mechanisms but can be strictly positive in
EF-TB mechanisms. We can, for any δ ≥ 0, decompose the envy term as

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) =

∑
µ̂:minτ µ̂(τ)≥µ(τ)−δ

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) (9.7)

+
∑

µ̂:minτ µ̂(τ)<µ(τ)−δ

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n).

By Lemma I.2, for any ε > 0 there exists a constant CE such that

∑
µ̂:minτ µ̂(τ)≥µ(τ)−δ

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{(µ(τ)− δ)n}−1/4+ε. (9.8)

To bound the second term in the RHS of 9.7, begin by noting that µ̂(τ) · n equals the
number of agents who draw type τ . This number is the outcome of n − 1 i.i.d. draws of
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agents different than i, plus 1 if ti = τ . Using Hoeffding’s inequality, for any τ , we can bound
the probability that the realized value of µ̂(τ) · n is much smaller than µ(τ) · n. We have
that, for any δ > 0, there exists a constant Cδ,µ > 0 such that20

Pr{µ̂(τ) · n < (µ(τ)− δ) · n|ti, µ, n} ≤ Cδ,µ · exp{−2δ2n}. (9.9)

Take now δ = minτ∈T µ(τ)/2. Applying the bounds (9.8) and (9.9) to inequality (9.7), we
have that

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{(µ(τ)− δ)n}−1/4+ε

+|T | · Cδ,µ · exp{−2δ2n}.

Multiplying n out of the first term in the RHS then yields

∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ CE ·min

τ∈T
{µ(τ)− δ}−1/4+ε · n−1/4+ε

+|T | · Cδ,µ · exp{−2δ2n}.

Therefore, there exists a constant C ′ such that for all n, t′i, and ti,∑
µ̂∈∆T

Pr{µ̂|ti, µ, n} · E(ti, t
′
i, µ̂, n) ≤ C ′ · n−1/4+ε.

Return now to inequality (9.5). Using the bound we just derived and Lemma I.1, we
have that there exists a constant C∆P such that

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤ C ′ · n−1/4+ε

+C∆P · n−1/2+ε.

Therefore, there exists a constant C ′′ such that

uti [φ
n
i (t′i, µ)]− uti [φni (ti, µ)] ≤ C ′′ · n−1/4+ε,

20Hoeffding’s inequality states that, given n i.i.d. binomial random variables with probability of success p,
and z > 0, the probability of having fewer than (p− z)n successes is bounded above by exp{−2z2n}. Note
that, in the bound below, ti is fixed, while the n− 1 coordinates of t−i are drawn i.i.d. according to µ. For
that reason, the Hoeffding bound must be modified to include a constant that depends on δ and µ, which
we denote Cδ,µ. The reason why a constant suffices is that, conditional on δ and µ, the bound taking into
account the n− 1 draws converges to 0 at the same rate as the bound considering n draws.
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as desired.

9.1.1 Proof of the Lemmas

We now prove the lemmas. Throughout the proofs, we consider the case ε < 1/4, which
implies the results for ε ≥ 1/4.

Proof of Lemma I.1. To show that a single player cannot appreciably affect the distribution
of µ̂, we start by calculating the effect of changing i’s report on the probability of an individual
value of µ̂ being drawn. Consider any µ̂ that is the empirical distribution of some vector of
types with n agents.

Enumerate the elements of T as

T = {τ1, τ2, · · · τ|T |}.

Since µ̂ follows a multinomial distribution, for any ti ∈ T , the probability Pr{µ̂|ti, µ, n}
equals(

n− 1

nµ̂(τ1), · · · , nµ̂(ti)− 1, · · · , nµ̂(τ|T |)

)
· µ(τ1)nµ̂(τ1) · · ·µ(ti)

nµ̂(ti)−1 · · ·µ(τ|T |)
nµ̂(τ|T |),

where the term in parentheses is a multinomial coefficient. Note that the nµ̂(τ) terms in this
expression are integers, since this is the number of agents with a given type in a realization
µ̂ of the distribution of types. Moreover, ti only enters the formula in one factorial term in
the denominator, and a power term in the numerator. With this observation, we have that

Pr{µ̂|t′i, µ, n}/Pr{µ̂|ti, µ, n} =
µ̂(t′i)

µ(t′i)
/
µ̂(ti)

µ(ti)
. (9.10)

For the rest of the proof, we will consider separately values of µ̂ which are close to µ, and
those that are very different from µ. We will show that player i can only have a small effect
on the probability of the former, while the latter occur with very small probability.

We derive bounds as functions of a variable δ. Initially, we derive bounds valid for any
δ > 0, and, later in the proof, we consider the case where δ is a particular function of n.
Define, for any δ > 0, the set Mδ of empirical distributions µ̂ that are sufficiently close to
the true distribution µ as

Mδ = {µ̂ ∈ ∆T : |µ̂(ti)− µ(ti)| < δ and |µ̂(t′i)− µ(t′i)| < δ}.
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Note that, when µ̂(ti) = µ(ti) and µ̂(t′i) = µ(t′i), the ratio on the right of equation (9.10)
equals 1 and is continuously differentiable in µ̂(ti) and µ̂(t′i). Consequently, there exists a
constant C > 0, and δ̄ > 0 such that, for all δ ≤ δ̄, if µ̂ ∈Mδ then

| µ̂(t′i)

µ(t′i)
/
µ̂(ti)

µ(ti)
− 1| < Cδ. (9.11)

Moreover, we can bound the probability that the empirical distribution of types µ̂ is not in
Mδ+ 1

n
. By Hoeffding’s inequality,21 for any δ > 0 and n,

Pr{µ̂ /∈Mδ+ 1
n
|ti, µ, n} ≤ 4 · exp(−2(n− 1)δ2) (9.12)

Pr{µ̂ /∈Mδ+ 1
n
|t′i, µ, n} ≤ 4 · exp(−2(n− 1)δ2).

We are now ready to bound ∆P . We can decompose the sum in equation (9.3) into the
terms where µ̂ is within or outside Mδ+ 1

n
. We then have

∆P =
∑

µ̂∈M
δ+ 1

n

|Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}|

+
∑

µ̂/∈M
δ+ 1

n

|Pr{µ̂|t′i, µ, n} − Pr{µ̂|ti, µ, n}|.

21Hoeffding’s inequality yields

Pr{|µ̂(ti)−
n− 1

n
µ(ti)−

1

n
| > δ|ti, µ, n} < 2 exp{−2(n− 1)δ2}.

Moreover,

|µ̂(ti)− µ(ti)| = |µ̂(ti)−
n− 1

n
µ(ti)−

1

n
+

1

n
(1− µ(ti))|

≤ |µ̂(ti)−
n− 1

n
µ(ti)−

1

n
|+ 1

n
|1− µ(ti)|.

Hence,

Pr{|µ̂(ti)− µ(ti)| > δ +
1

n
|ti, µ, n} < 2 exp{−2(n− 1)δ2}.

By a similar argument,

Pr{|µ̂(t′i)− µ(t′i)| > δ +
1

n
|ti, µ, n} < 2 exp{−2(n− 1)δ2}.

Adding these two bounds implies the bound (9.12) when player i plays ti, and the case where player i plays
t′i is analogous.
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Rearranging the first term, and using the triangle inequality in the second term we have

∆P ≤
∑

µ̂∈M
δ+ 1

n

|Pr{µ̂|t′i, µ, n}/Pr{µ̂|ti, µ, n} − 1| · Pr{µ̂|ti, µ, n}

+
∑

µ̂/∈M
δ+ 1

n

(Pr{µ̂|t′i, µ, n}+ Pr{µ̂|ti, µ, n}).

If we substitute equation (9.10) in the first term we obtain

∆P ≤
∑

µ̂∈M
δ+ 1

n

| µ̂(t′i)

µ(t′i)
/
µ̂(ti)

µ(ti)
− 1| · Pr{µ̂|ti, µ, n}

+
∑

µ̂/∈M
δ+ 1

n

(Pr{µ̂|t′i, µ, n}+ Pr{µ̂|ti, µ, n}).

We can bound the first sum using the fact that the ratio being summed is small for
µ̂ ∈ Mδ+ 1

n
, and bound the second sum since the total probability that µ̂ /∈ Mδ+ 1

n
is small.

Formally, using equations (9.11) and (9.12) we have that, for all n and δ with δ + 1
n
≤ δ̄,

∆P ≤ C(δ +
1

n
) + 8 · exp(−2(n− 1)δ2).

To complete the proof we will substitute δ by an appropriate function of n. Note that the
first term is increasing in δ, while the second term is decreasing in δ. In particular, for the
second term to converge to 0, asymptotically δ has to be greater than n−1/2. If we take
δ = n−1/2+ε, we obtain the bound

∆P ≤ C(n−1/2+ε + n−1) + 8 · exp(−2n2εn− 1

n
), (9.13)

for all n large enough such that δ+ 1
n

= n−1/2+ε+n−1 ≤ δ̄. Therefore, we can take a constant
C ′ such that

∆P ≤ C ′ · (n−1/2+ε + exp(−2n2εn− 1

n
)) (9.14)

for all n.

Asymptotically, the first term in the RHS of (9.14) dominates the second term.22 There-

22To see this, note that the logarithm of n−1/2+ε is −(1/2+ε) log n, while the logarithm of exp(−2n2ε n−1n )
equals −2n2ε n−1n . Since n2ε n−1n is asymptotically much larger than log n, we have that the second term in
equation (9.13) is asymptotically much smaller than the first.
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Figure I.1: A scatter plot of the lottery numbers li′ of different agents i′ on the horizontal
axis, and the utility uti [xni′(t, l)] of type ti agents from the bundles i′ receives in the vertical
axis. Balls represent agents with ti′ = ti, and triangles agents with ti′ = tj. The values are
consistent with EF-TB, as the utilities of type ti agents are always above the utilities from
bundles of any agent with lower lottery number.

fore, we can find a constant C∆P such that

∆P ≤ C∆P · n−1/2+ε,

completing the proof.

We now prove Lemma I.2. The result would follow immediately if we restricted attention
to mechanisms that are EF. The difficulty in establishing the result is that mechanisms that
are EF-TB but not EF can have large amounts of envy ex-post, i.e., uti [Φn

j (t)] − uti [Φn
i (t)]

can be large. To see why this can be the case, fix two players i and j and consider Figure
I.1. The figure plots, for several players i′ whose types are either ti′ = ti or ti′ = tj, lottery
numbers li′ in the horizontal axis and the utility of a type ti for the bundle i′ receives in the
vertical axis. Players with ti′ = ti are plotted as balls, and players with ti′ = tj as triangles.
Note that the figure is consistent with EF-TB. In particular, if lj ≤ li, then player i prefers
his own bundle to player j’s bundle. However, if player j received a higher lottery number,
lj > li, it is perfectly consistent with EF-TB that player i prefers player j’s bundle. That is,
a player corresponding to a ball may envy a player corresponding to a triangle in the picture,
as long as the triangle player has a higher lottery number. In fact, player i can envy player
j by a large amount, so EF-TB mechanisms can have a lot of envy ex-post.

Figure I.1 also suggests a way to prove the lemma, despite this difficulty. The proof
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exploits two basic insights. First, note that the curve formed by the balls – the utility player
i derives from the bundles assigned to the type ti players – is always above the curve formed
by the triangles – the utility player i derives from the bundles assigned to the type tj players.
Hence, for type ti agents to, on average, have a large amount of ex-post envy of type tj agents,
the lottery outcome must be very uneven, favoring type tj players over type ti players. We
can bound this average ex-post envy as a function of how well distributed lottery numbers
are (see Claim I.1). Second, due to symmetry, how much player i envies player j ex-ante
(i.e., before the lottery) equals how much player i prefers the bundles received by type tj
players over the bundles received by type ti players, averaging over all type ti and tj players,
and all possible lottery draws. Since lottery draws are likely to be very evenly distributed
in a large market, it follows that player i’s envy with respect to player j, before the lottery
draw, is small (see Claim I.2). We now formalize these ideas.

Proof of Lemma I.2. The proof of the lemma has three steps. The first step bounds how
much players of a given type envy players of another type, on average, conditional on a
vector of reports t and lottery draw l, as a function of how evenly distributed the lottery
numbers are. The second step bounds envy between two players, conditional on a vector of
reports t, but before the lottery is drawn. Finally, the third step uses these bounds to prove
the result.

Step 1. Bounding average envy after a lottery draw.

We begin by defining a measure of how evenly distributed a vector of lottery numbers is.
Fix a market size n, vector of types t ∈ T n, vector of lottery draws l and players i and j.
Partition the set of players in groups according to where their lottery number falls among
K uniformly-spaced intervals L1 = [0, 1/K), L2 = [1/K, 2/K), · · · , LK = [(K − 1)/K, 1].
Denote the set of all type ti′ players by

I(i′|t) = {i′′ : ti′′ = ti′},

and denote the set of type ti′ players with lottery numbers in Lk by

Ik(i
′|t, l) = {i′′ ∈ I(i′|t) : li′′ ∈ Lk}.

When there is no risk of confusion, these sets will be denoted by I(i′) and Ik(i′), respec-
tively. The number of elements in a set of players I(i′) is denoted by |I(i′)|.

Given the lottery draw l, we choose the number of partitions K(l, t, i, j) such that the
type ti and type tj players’ lottery numbers are not too unevenly distributed over the Lk sets.
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Specifically, let K(l, t, i, j) be the largest integer K such that, for i′ = i, j, and k = 1, · · · , K,
we have

| |Ik(i
′|t, l)|

|I(i′|t)|
− 1

K
| < 1

K2
. (9.15)

Such an integer necessarily exists, as K = 1 satisfies this condition. Intuitively, the larger is
K(l, t, i, j), the more evenly distributed the lottery numbers l are. When there is no risk of
confusion, we write K(l) or K for K(l, t, i, j).

The following claim bounds the average envy of type ti players towards type tj players,
after a lottery draw, as a function of K(l, t, i, j).

Claim I.1. Fix a market size n, vector of types t ∈ T n, lottery draws l ∈ [0, 1]n, and players
i and j. Then the average envy of type ti players towards type tj players is bounded by

∑
j′∈I(j)

uti [x
n
j′(t, l)]

|I(j|t)|
−
∑
i′∈I(i)

uti [x
n
i′(t, l)]

|I(i|t)|
≤ 3

K(l, t, i, j)
. (9.16)

Proof. Denote the minimum utility received by a player with type ti and lottery number in
Lk as

vk(l) = min{uti [xni′(t, l)] : i′ ∈ Ik(i)}.

Define vK(l)+1(l) = 1. Although vk(l) and K(l) depend on l, we will omit this dependence
when there is no risk of confusion. Note that, by the EF-TB condition, for all j′ ∈ Ik(j),

uti [x
n
j′(t, l)] ≤ vk+1. (9.17)

Moreover, for all i′ ∈ Ik+1(i),
vk+1 ≤ uti [x

n
i′(t, l)]. (9.18)

We now bound the average utility a type ti agent derives from the bundles received by
all players with type tj as follows.

∑
j′∈I(j)

uti [x
n
j′(t, l)]

|I(j)|
(9.19)

=
K∑
k=1

∑
j′∈Ik(j)

|Ik(j)|
|I(j)|

·
uti [x

n
j′(t, l)]

|Ik(j)|

≤
K∑
k=1

|Ik(j)|
|I(j)|

· vk+1.
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The second line follows from breaking the sum over the K sets Ik(j), and the third line
follows from inequality (9.17). We now use the fact that K was chosen such that both
|Ik(i)|/|I(i)| and |Ik(j)|/|I(j)| are approximately equal to 1/K. Using condition (9.15) we
can bound the expression above as

K∑
k=1

|Ik(j)|
|I(j)|

· vk+1 =
K∑
k=2

|Ik(i)|
|I(i)|

· vk +
K∑
k=2

[
|Ik−1(j)|
|I(j)|

− |Ik(i)|
|I(i)|

] · vk +
|IK(j)|
|I(j)|

· vK+1

≤
K∑
k=2

|Ik(i)|
|I(i)|

· vk + (K − 1)
2

K2
+ (

1

K
+

1

K2
)

≤
K∑
k=2

|Ik(i)|
|I(i)|

· vk +
3

K
.

The equation in the first line follows from rearranging the sum. The second line follows
from vk ≤ 1, and from the fact that the fractions Ik(i)/I(i) and Ik(j)/I(j) are in the interval
[ 1
K
− 1

K2 ,
1
K

+ 1
K2 ] as per inequality (9.15). The inequality in the third line follows from

summing the second and third terms of the RHS of the second line.

We now bound the RHS of this expression using the fact that type ti agents in the interval
Ik(i) receive utility of at least vk. Using inequality (9.18) we have

K∑
k=2

|Ik(i)|
|I(i)|

· vk +
3

K

≤
K∑
k=2

∑
i′∈Ik(i)

|Ik(i)|
|I(i)|

· uti [x
n
i′(t, l)]

|Ik(i)|
+

3

K

≤
K∑
k=1

∑
i′∈Ik(i)

|Ik(i)|
|I(i)|

· uti [x
n
i′(t, l)]

|Ik(i)|
+

3

K
.

The first inequality follows from vk being lower than the utility of any player in Ik(i), and
the second inequality follows because the latter sum equals the first plus the k = 1 term.
Since we started from inequality (9.19), the bound (9.16) follows, completing the proof.

Step 2: Bounding envy before the lottery draw.

We now bound the envy between two players i and j given a profile of types t, before the
lottery is drawn.

Claim I.2. Given ε > 0, there exists a constant CE > 0 such that, for any t ∈ T n and i, j ≤ n,
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player i’s envy with respect to player j is bounded by

uti [Φ
n
j (t)]− uti [Φn

i (t)] ≤ CE · min
i′=i,j
{|I(i|t)|}−1/4+ε (9.20)

Proof. Given a vector of types t and a player i′, using anonymity, we can write the expected
bundle Φn

i′(t) received by player i′ as the expected bundle received by all players with the
same type, over all realizations of l:

Φn
i′(t) =

∫
l∈[0,1]n

∑
i′′∈I(i′)

xni′′(t, l)

|I(i′)|
dl. (9.21)

Hence, player i’s envy of player j can be written as:

uti [Φ
n
j (t)]− uti [Φn

i (t)] =

∫
l∈[0,1]n

∑
j′∈I(j)

uti [x
n
j′(t, l)]

|I(j|t)|
−
∑
i′∈I(i)

uti [x
n
i′(t, l)]

|I(i|t)|
dl.

Claim I.1 then implies that envy is bounded by

uti [Φ
n
j (t)]− uti [Φn

i (t)] ≤
∫
l∈[0,1]n

3

K(l, t, i, j)
dl. (9.22)

We need to show that, on average over all lottery realizations, K(l) is large enough such
that the integral above is small. Given a lottery draw l denote by F̂i′(x|l) the fraction of
agents in I(i′) with lottery number no greater than x. Formally,

F̂i′(x|l) = |{i′′ ∈ I(i′) : li′′ ≤ x}|/|I(i′)|.

That is, F̂i′ is the empirical distribution function of the lottery draws of type ti′ agents. Since
the lottery numbers are i.i.d., we know that the F̂i′(x|l) functions are very likely to be close
to the actual distribution of lottery draws F (x) = x. By the Dvoretzky–Kiefer–Wolfowitz
inequality, for any δ > 0,

Pr{sup
x
|F̂i′(x|l)− x| > δ} ≤ 2 exp(−2|I(i′)|δ2). (9.23)

Fixing a partition sizeK, the conditions in (9.15) for the number of agents in each interval
to be close to 1/K can be written as

|[F̂i′(
k

K
|l)− F̂i′(

k − 1

K
|l)]− 1

K
| ≤ 1

K2
,
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for k = 1, . . . , K and i′ = i, j. Applying the inequality (9.23), using δ = 1/2K2, we have
that the probability that each such condition is violated is bounded by

Pr{||Ik(i
′)|

|I(i′)|
− 1

K
| > 1

K2
} ≤ 2 · exp(−|I(i′)|/2K4).

Consider now an arbitrary integer K̄ > 0. Note that the probability that K(l) ≥ K̄ is at
least as large as the probability that K = K̄ satisfies all of the conditions (9.15), since K(l)

by construction is the largest integer that satisfies these conditions. Therefore,

Pr{K(l) < K̄} ≤ 2K̄[exp(−|I(i)|/2K̄4) + exp(−|I(j)|/2K̄4)]

≤ 4K̄ exp(−min
i′=i,j
{|I(i′)|}/2K̄4).

Using this, we can bound the integral in the right side of equation (9.22). Note that the
integrand 3/K(l) is decreasing in K(l), and attains its maximum value of 3 when K(l) = 1.
Therefore, the integral in equation (9.22) can be bounded by∫

l∈[0,1]n

3

K(l, t, i, j)
dl ≤ 3

K̄
+ 3 Pr{K(l) < K̄}

≤ 3

K̄
+ 12K̄ exp(−min

i′=i,j
{|I(i′)|}/2K̄4),

Note that the first term on the RHS is decreasing in K̄, while the second term is increasing
in K̄. Taking K̄ = bmini′=i,j |I(i′)|1/4−εc, we have that this last expression is bounded by

3/ min
i′=i,j
b{|I(i′)|}1/4−εc

+12 min
i′=i,j
{|I(i′)|}1/4−ε exp{−min

i′=i,j
{|I(i′)|}4ε/2}.

Note that, as mini′=i,j{|I(i′)|} grows, the second term is asymptotically negligible com-
pared to the first term.23 Therefore, there exists a constant CE such that equation (9.20)

23This can be shown formally by taking logs of both terms. The log of the first term equals approximately

log 3− (
1

4
− ε) log min

i′=i,j
{|I(i′)|},

while the log of the second term equals

log 12 + (
1

4
− ε) log min

i′=i,j
{|I(i′)|} − min

i′=i,j
{|I(i′)|}4ε/2.

As mini′=i,j{|I(i′)|} grows, the difference between the second term and the first term goes to −∞, because
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holds, proving the claim.

Step 3: Completing the proof.

The lemma now follows from Claim I.2. Take ε > 0, and consider a constant CE as in
the statement of Claim I.2. Consider ti, t′i, µ̂, and n as in the statement of the lemma.
Recall that, since µ̂ ∈ ∆̄T , we have µ̂(τ) > 0 for all τ ∈ T . Additionally, since µ̂ equals the
empirical distribution of some vector of types, there exists t−i and j such that µ̂ = emp[t]

and tj = t′i. Therefore, we have

E(ti, t
′
i, µ̂, n) = uti [Φ

n
i (t′i|µ̂)]− uti [Φn

i (ti|µ̂)]

= uti [Φ
n
j (t)]− uti [Φn

i (t)]

≤ CE · min
i′=i,j
{|I(i|t)|}−1/4+ε

≤ CE ·min
τ∈T
{µ̂(τ) · n}−1/4+ε.

The first equation is the definition of E(ti, t
′
i, µ̂, n). The equation in the second line follows

from the way we defined t. The inequality in the third line follows from Claim I.2. The final
inequality follows because mini′=i,j{|I(i|t)|} is weakly greater than minτ∈T{µ̂(τ) · n}.

9.1.2 Infinite Set of Bundles

We close this Section by highlighting that the assumption of a finite set of bundles X0 is not
necessary for Theorem 1.

Remark 1. For the proof of Theorem 1 and Lemmas I.1 and I.2, we do not have to assume
X0 finite. The proofs follow verbatim with the following assumptions. X0 is a measurable
subset of Euclidean space. Agents’ utility functions over X0 are measurable and have range
[−∞, 1]. The utility of reporting truthfully is at least 0. That is, for all n and t ∈ T n,

uti [Φ
n
i (t)] ≥ 0.

The theorem holds with otherwise arbitrary X0 satisfying these assumptions. The added
generality is important for classifying the Walrasian mechanism in Appendix D.1.4.

mini′=i,j{|I(i′)|}4ε grows much more quickly than log mini′=i,j{|I(i′)|}.
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9.2 Proof of Theorem 2

This proof makes extensive use of the notation defined in Section 5. We construct the
direct mechanism {(F n)n∈N, T} as in equation (5.2). We establish each part of the theorem
statement in turn.

Part 1: For any type ti and µ ∈ ∆̄T , we have f∞(ti, µ) = φ∞(σ∗µ(ti), σ
∗
µ(µ)).

We demonstrate the result by showing that, given any ε > 0, there exists n0 such that,
for all n ≥ n0,

‖fn(ti, µ)− φn(σ∗µ(ti), σ
∗
µ(µ))‖ < ε.

By the triangle inequality this expression is bounded by24

∑
t−i∈Tn−1

Pr{t−i|t−i ∼ iid(µ)} · ‖F n
i (ti, t−i)− Φn

i (σ∗µ(ti), σ
∗
µ(t−i))‖. (9.24)

By the definition of continuity of a family of equilibria there exists n0 and a neighborhood
N of µ such that, for all n ≥ n0 and vector of n types t with emp[t] in N ,

‖Φn
i (σ∗emp[t](t))− Φn

i (σ∗µ(t))‖ < ε/2.

The left term inside the norm equals F n
i (t). Hence,

‖F n
i (t)− Φn

i (σ∗µ(t))‖ < ε/2. (9.25)

The sum (9.24) can be broken down into

∑
emp[ti,t−i]∈N

Pr{t−i|t−i ∼ iid(µ)} · ‖F n
i (ti, t−i)− Φn

i (σ∗µ(ti), σ
∗
µ(t−i))‖

+
∑

emp[ti,t−i]/∈N

Pr{t−i|t−i ∼ iid(µ)} · ‖F n
i (ti, t−i)− Φn

i (σ∗µ(ti), σ
∗
µ(t−i))‖.

Consider n ≥ n0. The first sum is smaller than ε/2 by inequality (9.25). Moreover, by
the law of large numbers, we may take n0 such that the second sum is smaller than ε/2.
Hence,

‖fn(ti, µ)− φn(σ∗µ(ti), σ
∗
µ(µ))‖ < ε/2 + ε/2 = ε,

as desired.
24This sum refers to the values of t−i

that are drawn with positive probability, as defined earlier.
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Part 2: The constructed mechanism is SP-L.

For any ti and t′i in T and µ ∈ ∆̄T , we have

uti [f
∞(ti, µ)] = uti [φ

∞(σµ(ti), σµ(µ))] ≥ uti [φ
∞(σµ(t′i), σµ(µ))] = uti [f

∞(t′i, µ)].

The equalities follow from part 1 and the inequality follows from the definition of a family
of limit equilibria. This implies that the direct mechanism is SP-L.

9.3 Proof of Proposition 1

We establish the Proposition in a series of claims.

Claim I.3. The correspondence Σ∗ is non-empty and upper hemi-continuous.

Proof. Payoffs
uti [φ

∞(σ(ti), σ(µ))]

vary continuously with σ and µ. Therefore, Σ∗ is non-empty and upper hemi-continuous
(see Fudenberg and Tirole (1991) p. 30).

Claim I.4. For a fixed µ ∈ ∆T , the probabilities of acceptance to each school are the same
in any limit Bayes Nash equilibrium.

Proof. Consider an equilibrium σ. Let the mass of students pointing to school s in this
equilibrium be

ms =
∑
ti

σ(ti)(s) · µ(ti)

and let the probability of acceptance at school s be ps. Let the vectors p = (ps)s∈S and
m = (ms)s∈S. To establish the result, consider another equilibrium σ′, with associated
vectors of the mass of students pointing to each school m′ and probabilities of acceptance
p′. Define the set of schools for which ps > p′s as S+ and the set of schools for which ps < p′s

as S−.

Consider now the types who, in the equilibrium σ, choose a school in S+ with positive
probability. All agents with types in

T+ = {ti ∈ T : max
s∈S+

uti · ps > max
s/∈S+

uti · ps}
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must choose a school in S+. That is, all agents who strictly prefer some school in S+ to any
school not in S+ must point to one of the S+schools in equilibrium. Therefore,

∑
ti∈T+

µti ≤
∑
s∈S+

ms.

Consider the types who choose a school in S+ in the equilibrium σ′. Note that the probability
of obtaining entry to any school in S+ is strictly lower at σ′ than at σ from how we constructed
S+. Similarly, the probability of obtaining entry to any school not in S+ is weakly higher.
Therefore, in the equilibrium σ′, only agents in T+ possibly choose a school in S+ with
positive probability. That is, ∑

s∈S+

m′s ≤
∑
ti∈T+

µti .

These two inequalities then imply that

∑
s∈S+

m′s ≤
∑
s∈S+

ms.

However, for any s ∈ S+ we have
ms < m′s,

because ps > p′s, and because probabilities of acceptance are determined by the mass of
students pointing to each school. Taken together, these equations imply that S+ = ∅.
Analogously, we can prove that S− = ∅, so p = p′ as desired.

Claim I.5. P ∗ is non-empty, single-valued, and continuous.

Proof. The previous claims show that P ∗ is non-empty and single-valued. Moreover, P ∗ is
upper hemi-continuous, because Σ∗ is upper hemi-continuous and probabilities of acceptance
depend continuously on equilibrium strategies and the distribution of types. Finally, P ∗ is
continuous because continuity is equivalent to upper hemi-continuity for single-valued and
non-empty correspondences.

Claim I.6. Σ∗ is convex-valued.

Proof. Fix µ, and consider two equilibria σ and σ′, and let σ̄ be a convex combination
of σ and σ′. We must show that the strategy profile σ̄ is an equilibrium. By Claim I.4,
the probability of acceptance to each school is the same under σ and σ′. Therefore, the



AZEVEDO AND BUDISH 50

probability of acceptance is the same under σ̄. Because the support of σ̄ is contained in the
union of the supports of σ and σ′, all types play optimally under σ̄.

Claim I.7. Consider a prior µ0 ∈ ∆̄T , and associated equilibrium σ0 such that, for some ti
and s0, we have σ0(ti)(s0) > 0. Then there exists a neighborhood of µ0 such that, for all µ
in this neighborhood, school s0 is optimal for ti given P ∗(µ). That is, for any s ∈ S,

P ∗s0(µ) · uti(s0) ≥ P ∗s (µ) · uti(s).

Proof. To reach a contradiction, assume that this is not the case for some type t′i and school
s0. Then there exists a school s1 and sequence of priors (µk)k∈N converging to µ0 such that,
for all k,

P ∗s0(µk) · ut′i(s0) < P ∗s1(µk) · ut′i(s1). (9.26)

Denote the mass of t′i types originally pointing to school s0 as the strictly positive constant

C = σ0(t′i)(s0) · µ0(t′i).

Denote the relative increase in probability of acceptance at school s from prior µ0 to prior
µk by ρs(µk) = P ∗s (µk)/P

∗
s (µ0). We can assume, passing to a subsequence if necessary, that

the ordering of schools according to ρs(µk) is the same for all k. Denote the schools where
the probability of acceptance increases relatively more than at school s0 as

S+ = {s : ρs(µk) > ρs0(µk)}.

Let σk be an equilibrium associated with µk. The mass of students pointing to schools
in S+ under σk minus the mass of students pointing to schools in S+ under σ0 equals

∑
s∈S+,ti∈T

σk(ti)(s) · µk(ti)−
∑

s∈S+,ti∈T

σ0(ti)(s) · µ0(ti).

This sum can be decomposed as

∑
s∈S+,ti∈T

(σk(ti)(s)− σ0(ti)(s)) · µ0(ti) (9.27)

+
∑

s∈S+,ti∈T

σk(ti)(s) · (µk(ti)− µ0(ti)).

Students who point to schools in S+ under σ0 continue to do so under σk. And, because
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equation (9.26) holds, the mass of students who point to schools in S\S+ under σ0 but who
point to schools in S+ under σk is at least C. Hence, the first term in expression (9.27) is
bounded below by C. Moreover, the second term converges to 0, because µk converges to
µ0. Therefore, for large enough k, the mass of students pointing to schools in S+ under σk
is strictly larger than the mass of students pointing to schools in S+ under σ0.

This implies that there exists a school s+ ∈ S+ such that the mass of students pointing to
s+ is strictly greater under σk than under σ0. And there exists a school s− ∈ S\S+ such that
the mass of students pointing to s− is strictly smaller under σk than under σ0. However, from
the way we constructed S+ we have that ρs+(µk) > ρs−(µk), which is a contradiction.

Claim I.8. Consider a prior µ0, and associated equilibrium σ0 such that, for some ti and
school s0, the mass of students pointing to s0 is strictly lower than its capacity:

∑
ti∈T

σ0(ti)(s0) · µ0(ti) < qs0 .

Then there exists a neighborhood of µ0 such that, for all µ in this neighborhood, P ∗s0(µ) = 1.

Proof. Denote the excess supply of school s0 as the strictly positive constant

C = qs0 −
∑
ti∈T

σ0(ti)(s0) · µ0(ti).

To reach a contradiction, assume that the claim’s conclusion does not hold. Then there
exists a sequence of priors (µk)k∈N converging to µ0 such that, for all k, P ∗s0(µk) < 1. Let σk
be an equilibrium given µk. The fact that the probability of acceptance at s0 is lower than
1 under σk implies that the difference between the mass of students pointing to s0 under σk
and σ0 is bounded below by C. That is,

∑
ti∈T

σk(ti)(s0) · µk(ti)−
∑
ti∈T

σ0(ti)(s0) · µ0(ti) > C.

Because µk converges to µ0, this implies that, for large enough k,

∑
ti∈T

(σk(ti)(s0)− σ0(ti)(s0)) · µ0(ti) > C/2. (9.28)

As in the previous claim’s proof, denote the relative increase in the probability of accep-
tance at school s from prior µ0 to prior µk by ρs(µk) = P ∗s (µk)/P

∗
s (µ0). We can assume,

passing to a subsequence if necessary, that the ordering of schools according to ρs(µk) is the
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same for all k. Denote the set of schools where the relative probability of acceptance does
not increase more than in s0 by

S− = {s : ρs(µk) ≤ ρs0(µ0)}\{s0}.

All students who point to a school in S− ∪ {s0} under σk point to schools in S− ∪ {s0}
under σ0. Thus, ∑

s∈S−∪{s0},ti∈T

(σk(ti)(s)− σ0(ti)(s)) · µ0(ti) ≤ 0.

Substituting inequality (9.28) we have that, for large enough k,

∑
s∈S−,ti∈T

(σk(ti)(s)− σ0(ti)(s)) · µ0(ti) < −C/2. (9.29)

The mass of students pointing to schools in S− under σk minus the mass of students
pointing to schools in S− under σ0 equals

∑
s∈S−,ti∈T

σk(ti)(s) · µk(ti)−
∑

s∈S−,ti∈T

σ0(ti)(s) · µ0(ti).

This sum can be decomposed into

∑
s∈S−,ti∈T

(σk(ti)(s)− σ0(ti)(s)) · µ0(ti)

+
∑

s∈S−,ti∈T

σk(ti)(s) · (µk(ti)− µ0(ti)).

By inequality (9.29), for large enough k, the first term in the expression above is smaller
than −C/2. Because the second term converges to 0, we have that, for sufficiently large k,
the mass of students pointing to schools in S− under σk is strictly lower than the mass of
students pointing to schools in S− under σ0. Hence, for at least one school s− in S−, we
have ρs−(µk) ≥ 1. But this contradicts ρs−(µk) ≤ ρs0(µk) < 1.

Claim I.9. The correspondence Σ∗ is lower hemi-continuous in ∆̄T .

Proof. To prove lower hemi-continuity, fix µ0, an associated limit equilibrium σ0, and consider
a sequence (µk)k≥1 converging to µ0. Fix ε > 0. We will show that there exists a sequence of
equilibria (σk)k≥1, associated with the µk, which converges to a strategy profile with distance
lower than ε to σ0.
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Part 1: Define the candidate sequence of equilibria.

Let σ′k be an equilibrium associated with µk. Passing to a subsequence, we can assume
that (σ′k)k≥1 converges to an equilibrium σ′0 associated with µ0. Define

σk(ti) = σ′k(ti) + (1− ε) · [σ0(ti)− σ′0(ti)] ·
µ0(ti)

µk(ti)
.

Note that this sequence converges to ε ·σ′0 +(1− ε) ·σ0. Hence, it converges to a point within
ε distance from σ0.

Part 2: For large enough k, σk is a strategy profile.

Because the sum
∑

s σk(ti)(s) = 1, we only have to demonstrate that every σk(ti)(s) is
nonnegative. To see this, note that σk converges to ε · σ′0 + (1 − ε) · σ0. Hence, if either
σ0(ti)(s) > 0 or σ′0(ti)(s) > 0, then σk(ti)(s) > 0 for sufficiently large k. The remaining case
is when σ0(ti)(s) = σ′0(ti)(s) = 0. In this case we have that σk(ti)(s) = σ′k(ti)(s) ≥ 0.

Part 3: For sufficiently large k, the σk are equilibria.

We will begin by proving that, for sufficiently large k, the probabilities of acceptance
under σk equal those under σ′k. That is, the probabilities of acceptance under σk equal
P ∗(µk). To see this, note that the mass of agents pointing to school s under σk equals

∑
ti

σk(ti)(s) ·µk(ti) =
∑
ti

σ′k(ti)(s) ·µk(ti) + (1− ε) ·
∑
ti

[σ0(ti)(s)−σ′0(ti)(s)] ·µ0(ti). (9.30)

There are two cases. The first case is when the mass of students pointing to s is strictly
lower than qs under either σ0 or σ′0. In this case, we have P ∗s (µ0) = 1, so that, in the mass
of students pointing to s is at most equal to qs under both σ′0 and σ0. The mass of students
pointing to school s under σk converges to

ε · (
∑
ti∈T

σ′0(ti)(s)) + (1− ε) · (
∑
ti∈T

σ0(ti)(s)).

That is, to an average of the mass of students pointing to s under σ′0 and σ0. Because both
quantities are weakly smaller than qs, and at least one of them is strictly lower than qs, this
average is strictly lower than qs. Thus, for large enough k, the probability of acceptance to
s under σk is 1. This is equal to the probability of acceptance under σ′k, by Claim I.8.

The second case is when the mass of students pointing to school s is at least equal to qs
both under σ0 and under σ′0. If this is the case, then the mass of students pointing to school
s is the same under σ0 and under σ′0, because probabilities of acceptance are the same in any
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equilibrium under µ0. Therefore, the sum

∑
ti

[σ0(ti)(s)− σ′0(ti)(s)] · µ0(ti) = 0.

Substituting this in Equation (9.30), we have that the probabilities of acceptance under σk
and σ′k are equal, as desired.

To complete the proof we show that, for large enough k, the strategies σk are optimal
given P ∗(µk). Consider a school s with σk(ti)(s) > 0. Therefore, either σ′k(ti)(s) > 0 or
σ0(ti)(s) > 0. If σ′k(ti)(s) > 0, then it must be optimal for type ti to point to s under
P ∗(µk), because σ′k is an equilibrium. Likewise, if σ0(ti)(s) > 0, then Claim I.7 implies that,
for large enough k, it is optimal for type ti to report s under P ∗(µk).

The proposition then follows from Claims I.3, I.5, and I.9.

9.4 Proof of Corollary 1

By Proposition 1, Σ∗ is non-empty, lower hemi-continuous, and convex-valued. The Michael
Selection Theorem implies that Σ∗ has a continuous selection. Because outcomes of the
Boston mechanism vary continuously with the empirical distribution of types, the selection is
a continuous family of limit Bayes-Nash equilibria. The corollary then follows from Theorem
1.
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B Relaxing Continuity to Quasi-Continuity

In this section we relax the continuity requirement in Theorem 2 to a condition we call quasi-
continuity. Roughly, quasi-continuity relaxes continuity to allow for discontinuities so long
as they are knife-edge. This relaxation is useful because some mechanisms are discontinuous
at some knife-edge configurations. For example, the families of equilibria of pay-as-bid and
uniform-price auctions described in Appendix D are not continuous, but are quasi-continuous.

Definition B.1. Consider a mechanism {(Φn)N, A} with limit φ∞(·, ·), and a family of limit
Bayes-Nash equilibria (σ∗µ)µ∈∆T . The family of equilibria is quasi-continuous if, for every
µ0 ∈ ∆̄T and every ε > 0, there exists a neighborhood N of µ0 that can be decomposed as
N = ∪1≤k≤KAk ∪ B with each Ak open, such that:

1. If types are drawn i.i.d. according to µ0, then the probability that the realized empirical
distribution of types is within distance 1/n of B goes to zero as n grows large. Formally,

lim
n→∞

Pr{distance(emp[t],B) ≤ 1/n|t ∈ T n, t ∼ iid(µ0)} = 0.

2. Within each set Ak, in a large enough market, agents’ outcomes are continuous with
respect to changes in the empirical distribution of opponents’ types and the strategy
that agents use. Formally, there exists n0 such that for each Ak, for any n ≥ n0, and
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†University of Chicago Booth School of Business, eric.budish@chicagobooth.edu.
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Figure B.1: The Figure illustrates the quasi-continuity definition, with K = 2. Around the
prior µ0 ∈ ∆̄T , there exists a neighborhood N that can be decomposed into the sets A1

and A2, where equilibrium outcomes vary continuously, and a small “knife edge” set B where
equilibrium outcomes may be discontinuous.

any µ, µ′, emp[ti, t−i], emp[ti, t
′
−i] ∈ Ak, we have:

‖Φn
i (σ∗µ(ti), σ

∗
µ(t−i))− Φn

i (σ∗µ′(ti), σ
∗
µ′(t

′
−i))‖ < ε.

In words, quasi-continuity allows the family of equilibria to be discontinuous at prior µ0,
but it requires that the discontinuity is knife-edge in the following sense: a small enough
neighborhood N of µ0 can be decomposed as a finite number of subsets Ak where the
outcomes vary continuously, and a set B where the empirical distribution of a randomly
drawn type profile lands with vanishingly small probability. This decomposition is illustrated
in Figure B.1. Heuristically, B is a small discontinuity set, and is surrounded by setsAk where
outcomes vary continuously. Note that quasi-continuity requires that, within each region Ak,
outcomes vary continuously with both types and strategies. In contrast, continuity as defined
in Definition 9 only requires that outcomes vary continuously with strategies, which is less
restrictive.

Theorem B.1. Given any mechanism {(Φn)N, A} with a quasi-continuous family of limit
Bayes-Nash equilibria (σ∗µ)µ∈∆T , there exists a direct, SP-L mechanism {(F n)N, T} with the
following properties.

1. If the original mechanism is continuous at a prior µ0 ∈ ∆̄T then, in the limit, truthful
play of the direct mechanism produces the same outcomes as equilibrium play of the
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original mechanism. Formally, for any ti ∈ T , we have

f∞(ti, µ0) = φ∞(σ∗µ0(ti), σ
∗
µ0

(µ0)),

where f∞ is the limit of the direct mechanism.

2. For any prior µ0 ∈ ∆̄T , in the large market limit, truthful play of the direct mechanism
produces the same outcomes as a convex combination of equilibrium play of the original
mechanism under priors that are close to µ0. Formally, for any ε > 0, there exists n0,
an integer K, numbers πnk with

∑
k=1,··· ,K π

n
k = 1, and priors µk with ‖µk − µ0‖ < ε

such that, for all n ≥ n0 and ti ∈ T , we have

‖fn(ti, µ0)−
∑

k=1,··· ,K

πnk · φn(σ∗µk(ti), σ
∗
µk

(µk))‖ < ε,

where fn is the function representing the direct mechanism from an interim perspective,
as defined in equation (3.1).

Theorem B.1 says that, if the original mechanism is quasi-continuous rather than contin-
uous, there exists an SP-L mechanism that approximates the Bayes-Nash mechanism, but
in a weaker sense than in the continuous case: the SP-L mechanism approximates a convex
combination of outcomes of the original Bayes-Nash mechanism, for a set of priors arbitrarily
close to the prior µ0.

B.1 Proof of Theorem B.1

Let F be defined as in equation (5.2). The proof of Theorem B.1 is based on the following
approximation lemma.

Lemma B.1. Fix a prior µ0 ∈ ∆̄T and ε > 0. Then there exists a neighborhood N =

A1 ∪ · · · ∪ AK ∪ B, with each Ak open, and n0, with the following property. For each
k = 1, · · · , K we can take a prior µk in Ak with ‖µk − µ0‖ < ε such that, for all n ≥ n0,
there exist positive weights πnk with

∑
1≤k≤K π

n
k = 1, such that, for all ti,

‖fn(ti, µ0)−
K∑
k=1

πnk · zk(ti)‖ < ε, (B.1)

where
zk(ti) = φ∞(σ∗µk(ti), σ

∗
µk

(µk)). (B.2)
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The lemma states that the bundle received by an agent playing ti in the direct mechanism
can be approximated by a convex combination of the bundles type ti receives in the limit
Bayes-Nash equilibria of the original mechanism, with the elements in the convex combina-
tion corresponding to priors in a small neighborhood of µ0, with one prior for each region
Ak.

The lemma deals with one of the key difficulties in the proof. Namely, the lemma implies
that each agent can only have a small effect on the aggregate outcome of the constructed
mechanism, in the sense that the weights πnk do not depend on agent i’s report ti. Note also
that the approximation formula is not generally true without the quasi-continuity condition,
as shown with an example in Appendix B.2. Before proving the lemma, we use it to prove
Theorem B.1.

Proof of Theorem B.1. If the family of Bayes-Nash equilibria is continuous at a prior µ0 ∈
∆̄T , then the proof of Theorem 2 implies that truthful play of f under µ0 produces the same
outcomes as equilibrium play of the original mechanism. That is, Part 1 of of the theorem
statement follows from the proof of Theorem 2.

Consider now a prior µ0 ∈ ∆̄T , and ε > 0. Recall that, by assumption, the family of
limit Bayes-Nash equilibria is quasi-continuous, but may not be continuous. We will show
that there exists n0 such that, for all n ≥ n0, the gain from misreporting is lower than ε for
any type (which proves that the direct mechanism is SP-L) and that Part 2 of the theorem
statement holds.

The proof is based on the following approximation. By Lemma B.1 (using ε
2|X0| as the

constant), there exists a neighborhood N = A1∪ · · ·∪AK ∪B of µ0, priors µk ∈ Nk, weights
πnk , and n0 with the following properties. For all t′i in T , and n ≥ n0,

K∑
k=1

πnk = 1, (B.3)

‖µk − µ0‖ < ε, and

‖fn(t′i, µ0)−
K∑
k=1

πnk · zk(t′i)‖ <
ε

2|X0|
≤ ε

2
,

where zk is given by equation (B.2).

Step 1: the gain from misreporting is no greater than ε.

Consider, for any pair of types ti and t′i, the gain of a type ti player from deviating to
t′i, when opponents play i.i.d. according to µ0. Using the approximation formula, we can
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bound the gain from deviating, for n ≥ n0, by

uti [f
n(t′i, µ0)]− uti [fn(ti, µ0)] ≤

K∑
k=1

πnk · {uti [zk(t′i)]− uti [zk(ti)]}

+|uti [fn(t′i, µ0)]−
K∑
k=1

πnk · uti [zk(t′i)]|

+|uti [fn(ti, µ0)]−
K∑
k=1

πnk · uti [zk(ti)]| <

0 + ε/2 + ε/2 = ε.

The first inequality follows from rearranging the LHS, and then taking absolute values of
the two last terms in the RHS. As for the second inequality, the first term is weakly negative
by equation (B.2) and the fact that σ∗µk is a limit equilibrium. The second and third terms
are smaller than ε/2 by the bounds (B.3), the fact that utility is always between 0 and 1,
and that the set of random bundles has |X0| dimensions. Since µ0 ∈ ∆̄T and ε > 0 are
arbitrary, we have that the constructed mechanism is SP-L.

Step 2: outcomes of the constructed mechanism {(F n)N, T} approximate a

convex combination of equilibrium outcomes of {(Φn)N, A} under (σ∗µ)µ∈∆T at µ0.

By the triangle inequality we have

‖fn(ti, µ0)−
K∑
k=1

πnk · φn(σ∗µk(ti), σ
∗
µk

(µk))‖

≤ ‖fn(ti, µ0)−
K∑
k=1

πnk · φ∞(σ∗µk(ti), σ
∗
µk

(µk))‖

+
K∑
k=1

πnk · ‖φ∞(σ∗µk(ti), σ
∗
µk

(µk))− φn(σ∗µk(ti), σ
∗
µk

(µk))‖.

The first term on the RHS of the inequality is bounded by ε/2, by the bound (B.3). By
the definition of the limit, and the fact that the πnk sum to 1, we may take n0 to be large
enough such that the second term is also bounded by ε/2. Moreover, this bound can be
taken uniform for all ti ∈ T . Therefore, we have that

‖fn(ti, µ0)−
K∑
k=1

πnk · φn(σ∗µk(ti), σ
∗
µk

(µk))‖ < ε/2 + ε/2 = ε, (B.4)
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as desired.

B.1.1 Proof of Lemma B.1

In the proof we will use the following notation. If t′ is a vector of types, and S ⊆ ∆T , we
will say that t′ ∈ S iff emp[t′] ∈ S. Throughout the proof, we use the shorthand µ̂ = emp[t].
The expression

Pr(t′−i|t′−i ∼ µ)

denotes the probability that the vector of types t′−i is realized if each player’s type is drawn
i.i.d. according to the distribution µ.

Proof of Lemma B.1. We begin by constructing the neighborhood in the statement of the
lemma. By the quasi-continuity condition, we take a neighborhood N = ∪Kk=1Ak ∪B and n0

such that Conditions 1 and 2 of Definition B.1 are satisfied with ε/5 in place of ε. We take
N to be convex, which is without loss of generality.1 We let the µk be any priors in Ak such
that ‖µk−µ0‖ < ε. With that, to prove the lemma we have to show that there exist weights
πnk such that the approximation formula (B.1) holds. The proof involves three steps.

Step 1: approximation of F n(t) for vectors of types with empirical distribution

of types in each region Ak.

Claim B.1. The integer n0 can be taken such that, for all n ≥ n0, k = 1, · · · , K, and t ∈ Ak
we have

‖F n
i (t)− zk(ti)‖ < 3ε/5.

Proof. We begin with the term F n
i (t), and derive two inequalities that together yield the de-

sired bound. The first inequality bounds the distance between F n
i (t) and φn(σ∗µk(ti), σ

∗
µk

(µk)).
By definition, we have that

φn(σ∗µk(ti), σ
∗
µk

(µk)) =
∑
t′−i

Pr(t′−i|t′−i ∼ µk) · Φn
i (σ∗µk(ti), σ

∗
µk

(t′−i)). (B.5)

1To see this, note that, if N is a non-convex neighborhood satisfying the requirements, we can take a ball
N ′ 3 µ0 contained in N , and define the sets A′k = Ak ∩ N ′ and B′ = B ∩ N ′. It follows that Conditions 1
and 2 hold for the new sets, as each A′k ⊆ A and B′ ⊆ B.
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Therefore, we have that

‖F n
i (t)− φn(σ∗µk(ti), σ

∗
µk

(µk))‖ (B.6)

= ‖F n
i (t)−

∑
t−i

Pr(t′−i|t′−i ∼ µk) · Φn
i (σ∗µk(ti), σ

∗
µk

(t′−i))‖

≤
∑

t′−i∈Tn−1

Pr(t′−i|t′−i ∼ µk) · ‖F n
i (t)− Φn

i (σ∗µk(ti), σ
∗
µk

(t′−i))‖

=
∑

t′−i:emp[ti,t′−i]∈Ak

Pr(t′−i|t′−i ∼ µk) · ‖F n
i (t)− Φn

i (σ∗µk(ti), σ
∗
µk

(t′−i))‖+

∑
t′−i:emp[ti,t′−i]/∈Ak

Pr(t′−i|t′−i ∼ µk) · ‖F n
i (t)− Φn

i (σ∗µk(ti), σ
∗
µk

(t′−i))‖.

The first equality follows by substituting the definition of φn from equation (B.5). The
inequality follows from the triangle inequality and the fact that the probabilities must sum
to 1. The last equality simply breaks the sum into two parts, the t′−i for which emp[ti, t

′
−i]

is in Ak, and the ones for which it is not.

Consider now the expression in the RHS of inequality (B.6). From the way we construct
F n(·) and using the convention that µ̂ = emp[t], the first term equals

∑
t′−i:emp[ti,t′−i]∈Ak

Pr(t′−i|t′−i ∼ µk) · ‖F n
i (t)− Φn

i (σ∗µk(ti), σ
∗
µk

(t′−i))‖

=
∑

t′−i:emp[ti,t′−i]∈Ak

Pr(t′−i|t′−i ∼ µk) · ‖Φn
i (σ∗µ̂(ti), σ

∗
µ̂(t−i))− Φn

i (σ∗µk(ti), σ
∗
µk

(t′−i))‖.

Condition 2 in Definition B.1 implies that, for all n ≥ n0, this expression is bounded above
by ε/5. As for the second term in the RHS of inequality (B.6), by the weak law of large
numbers, we may take n0 large enough such that the total probability that emp[ti, t

′
−i] /∈ Ak

is lower than ε/5 for all n ≥ n0. This bounds the second term by ε/5. Substituting these
bounds in inequality (B.6) then yields

‖F n
i (t)− φn(σ∗µk(ti), σ

∗
µk

(µk))‖ < ε/5 + ε/5 = 2ε/5. (B.7)

Finally, by the definition of the limit, we may take n0 such that, for all n ≥ n0,

‖φn(σ∗µk(ti), σ
∗
µk

(µk))− zk(ti)‖ (B.8)

= ‖φn(σ∗µk(ti), σ
∗
µk

(µk))− φ∞(σ∗µk(ti), σ
∗
µk

(µk))‖ < ε/5.
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Note that these bounds are uniform for all t ∈ Ak. Moreover, since K is finite, n0 can
be taken such that the bounds hold for all k = 1, · · · , K. The claim then follows from
inequalities (B.7) and (B.8), as, for n ≥ n0,

‖F n
i (t)− zk(t)‖

≤ ‖F n
i (t)− φn(σ∗µk(ti), σ

∗
µk

(µk))‖+ ‖φn(σ∗µk(ti), σ
∗
µk

(µk))− zk(ti)‖
< 2ε/5 + ε/5 = 3ε/5,

completing the proof.

The next step shows that the probability that a vector (ti, t−i) falls within region Ak,
when t−i is distributed randomly, does not vary too much with ti in large markets. This is a
key step in our argument, as it implies that an individual agent cannot appreciably change
the probability that t falls within each Ak, and therefore cannot have a large effect on the
aggregate allocation.

Step 2: approximation of the probability that the empirical distribution of

types is in region Ak.

Claim B.2. The integer n0 can be taken such that, for all n ≥ n0 there exist weights
πn1 , . . . , π

n
K such that

∑K
k=1 π

n
k = 1 and

|Pr{(ti, t−i) ∈ Ak|t−i ∈ T n−1, t−i ∼ µ0} − πnk | < ε/5K

for all k and all ti.

Proof. Let ε′ = ε/5K. We begin by constructing numbers π̄nk that are approximately equal
to the weights πnk in the statement of the claim. Let

π̄nk = Pr{t′ ∈ Ak|t′ ∈ T n, t′ ∼ µ0}

be the probability that a vector of n types drawn independently according to µ0 is in Ak.
We will show that, for large n, for any type ti, the π̄nk are very close to the probability

Pr{(ti, t−i) ∈ Ak|t−i ∈ T n−1, t−i ∼ µ0}

that a vector with agent i’s type fixed at ti and the other types drawn i.i.d. is in Ak. To see
this, consider the difference between the probability of a vector of types falling within region
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Ak when i’s type is fixed as ti, minus the probability of falling within Ak when i’s type is
drawn randomly. This difference equals

Pr{(ti, t′−i) ∈ Ak|t′−i ∈ T n−1, t′−i ∼ µ0} − π̄nk (B.9)

= Pr{(ti, t′−i) ∈ Ak and t′ /∈ Ak|t′ ∈ T n, t′ ∼ µ0}
− Pr{(ti, t′−i) /∈ Ak and t′ ∈ Ak|t′ ∈ T n, t′ ∼ µ0}.

This expression equals the probability of drawing a vector t′ ∈ T n where changing agent
i’s type from t′i to ti moves the vector of types from outside Ak to inside Ak, minus the
probability of choosing a vector where changing i’s type from t′i to ti moves the vector from
inside Ak to outside Ak. We now show that the probability of such vectors being drawn is
very small in a sufficiently large market.

Consider the case where (ti, t
′
−i) /∈ Ak, but (t′i, t

′
−i) ∈ Ak. One possibility is that (ti, t

′
−i) /∈

N . By the law of large numbers, we may take n0 large enough such that for n ≥ n0 the
probability of this happening is less than ε′/8. The other possibility is that (ti, t

′
−i) ∈ N , but

(ti, t
′
−i) /∈ Ak. In this case, the line segment connecting emp[ti, t

′
−i] and emp[t′] contains a

point in B, because N is convex and each Ak is open. This means that the distance between
emp[t′] and B is at most 1/n. By Condition 1 of Definition B.1, we may take n0 such that
this probability is less than ε′/8. This argument implies that we may take n0 such that, for
all n ≥ n0,

Pr{(ti, t′−i) /∈ Ak, t′ ∈ Ak|t′ ∈ T n, t′ ∼ µ0} < ε′/8 + ε′/8 = ε′/4.

An analogous argument proves that n0 can be chosen such that, for n ≥ n0,

Pr{(ti, t′−i) ∈ Ak, t′ /∈ Ak|t′ ∈ T n, t′ ∼ µ0} < ε′/4.

Substituting these two inequalities into the RHS of equation (B.9) yields that

|Pr{(ti, t′−i) ∈ Ak|t′−i ∈ T n−1, t′−i ∼ µ0} − π̄nk | < ε′/4 + ε′/4 = ε′/2. (B.10)

Note, however, that the π̄nk do not necessarily sum to 1, as it may be the case that
t′ /∈ ∪kAk. To complete the proof, define

πnk = π̄nk/
K∑
k′=1

π̄nk′ . (B.11)
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We have that the probability that t′ /∈ ∪kAk converges to 0. Therefore, we may take n0

such that for n ≥ n0

|1− 1/
K∑
k′=1

π̄nk′| < ε′/2. (B.12)

We now apply these bounds to prove the claim. We have

|Pr{(ti, t′−i) ∈ Ak|t′−i ∈ T n−1, t′−i ∼ µ0} − πnk |
≤ |Pr{(ti, t′−i) ∈ Ak|t′−i ∈ T n−1, t′−i ∼ µ0} − π̄nk |+ |πnk − π̄nk |
< ε′/2 + |πnk − π̄nk |

= ε′/2 + |π̄nk/(
K∑
k′=1

π̄nk′)− π̄nk |

= ε′/2 + |1− 1/(
K∑
k′=1

π̄nk′)| · π̄nk

< ε′/2 + ε′/2 = ε/5K.

The series of steps in the above derivation were as follows. The second line follows from the
triangle inequality. The third line uses the bound from inequality (B.10). The fourth line
uses the definition of πnk from equation (B.11). Finally, the fifth line follows from multiplying
π̄nk out of the right term, and the sixth line comes from inequality (B.12) and π̄nk ≤ 1.

Step 3: completing the proof.

Finally, we apply the results from Steps 1 and 2 to prove the lemma. We have

fn(ti, µ0)−
K∑
k=1

πnk · zk(ti) =
∑

t−i∈Tn−1

Pr(t−i|t−i ∼ µ0) · F n
i (t)−

K∑
k=1

πnk · zk(ti).

This sum can be decomposed depending on whether µ̂ = emp[t] is in each of the Ak sets
or outside the union of the Ak sets. We have

fn(ti, µ0)−
K∑
k=1

πnk · zk(ti) (B.13)

=
K∑
k=1

({
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · F n
i (t)} − πnk · znk (ti)) +

∑
t−i:µ̂/∈∪kAk

Pr(t−i|t−i ∼ µ0) · F n
i (t).

We begin by looking at the terms where µ̂ is in one of the Ak. We will show that for
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each k these terms are small. We have that, for each k,

‖(
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · F n
i (t))− πnk · zk(ti)‖ (B.14)

= ‖
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · (F n
i (t)− zk(ti))

+({
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)} − πnk ) · zk(ti)‖

≤
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · ‖F n
i (t)− zk(ti)‖

+|{
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)} − πnk |.

The equality in the second line follows from rearranging the expression. The inequality in
the third line follows from the triangle inequality, and the fact that the norm of the vector
zk(ti) ∈ X is weakly less than 1.

Consider now the right hand side of inequality (B.14). By Claim B.1, we may take n0

such that for all n ≥ n0 and t−i such that µ̂ ∈ Ak,

‖F n
i (t)− zk(ti)‖ < 3ε/5.

By Claim B.2, n0 may be taken such that, for n ≥ n0, the second term is bounded by

|{
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0)} − πnk | <
1

5K
ε.

Substituting these two bounds in inequality (B.14) we have that, for all n ≥ n0,

‖{
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · F n
i (t)} − πnk · znk (ti)‖

<
3

5
ε ·

∑
t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) +
1

5K
ε.

Summing over all k we get

K∑
k=1

‖{
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · F n
i (t)} − πnk · znk (ti)‖ <

3

5
ε+K

1

5K
ε = 4ε/5.

Using the triangle inequality, the sum operator can be brought into the norm, yielding
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the inequality

‖
K∑
k=1

({
∑

t−i:µ̂∈Ak

Pr(t−i|t−i ∼ µ0) · F n
i (t)} − πnk · znk (ti))‖ < 4ε/5. (B.15)

The argument above bounds the terms in the RHS of equation (B.13) that correspond to t
within the sets Ak. To bound the last term, note that we may take n0 to be large enough
so that, for all n ≥ n0, the probability that t /∈ ∪kAk is strictly less than ε/5. That is,

∑
t−i:µ̂/∈∪kAk

Pr(t−i|t−i ∼ µ0) < ε/5. (B.16)

Plugging equations (B.15) and (B.16) into equation (B.13) we obtain

‖fn(ti, µ0)−
K∑
k=1

πnk · zk(ti)‖ < ε,

completing the proof of Step 3, and hence the lemma.

B.2 An Example without Quasi-Continuity

This section shows, by example, that it is necessary to impose regularity conditions on a
family of limit equilibria to obtain the results in Theorem B.1. We consider an example of
a non quasi-continuous family of equilibria, and show that the mechanism constructed in
the proof of Theorem B.1 does not satisfy any of the implications of the theorem. Namely,
the constructed mechanism is not SP-L, and outcomes of the constructed mechanism do
not approximate the outcomes of the original mechanism, nor a convex combination of the
outcomes. We consider the case of BNE of the finite mechanism to highlight that, even for
finite economy BNE, the construction used to prove our Theorems 2 and B.1 depends on the
quasi-continuity condition. It is a simple matter to extend the logic of the example to limit
BNE.

Consider a set of two objects O = {o1, o2}. The set of bundles is X0 = O × {0,−10}, so
that a bundle x0 specifies an object x0(1) = o1 or o2, and a transfer x0(2) = 0 or −10 of a
numeraire. Therefore, agents either receive no transfer, or pay a fine of 10. The set of types
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is T = O = {o1, o2}, with an agent’s type denoting her favorite object. Utility is given by

uti(x0) = 1{x0(1) = ti}+ x0(2).

That is, an agent has utility 1 for receiving an object matching her type, and quasilinear
utility on the transfer. Consider the set of actions

A = O × {f, nf}.

An action ai specifies an object preference ai(1) = o1 or o2, and a message ai(2) = f (standing
for fine) or nf (standing for no fine). We define the mechanism {Φn, A} as follows.

• If all aj(2) = nf , j = 1, · · · , n, then Φn
i (a) = (ai(1), 0). That is, if all agents choose

the no fine option, then each agent receives her favorite object and no one is fined.

• If some aj(2) = f , j = 1, · · · , n, then some agents will be fined, depending on whether
the number of agents asking for object o1 is odd or even.

– If #{j : aj(1) = o1} is odd, then agents asking for object o1 are fined:

Φn
i (a) = (ai(1),−10 · 1{ai(1) = o1}).

– If #{j : aj(1) = o1} is even, then agents asking for object o2 are fined:

Φn
i (a) = (ai(1),−10 · 1{ai(1) = o2}).

We now define a sequence of families of BNE. Let n0 be a sufficiently large number, and
δ > 0 a small positive constant. Let µ0 be the distribution putting equal weight on o1 and
o2. Define now the following subset of N× ∆̄T ,

S = {(n, µ) ∈ N× ∆̄T : n · µ(o1) is an odd integer, n ≥ n0, ‖µ− µ0‖ < δ}.

That is, S is the set of all pairs of a number of players and a distribution over types such
that, in a type profile with n types and empirical distribution of types µ, the number of
players with ti = o1 is odd. Moreover, n has to be larger than n0 and µ sufficiently close to
µ0.

Consider now the following sequence of families (σnµ)µ∈∆T,n∈N of BNE of this mechanism.



14

• If (n, µ) ∈ S, then σnµ specifies that agents play actions that match their types ai(1) =

ti, and send the fine message ai(2) = f .

• Otherwise agents play actions that match their types ai(1) = ti, but send the no fine
message ai(2) = nf .

Note that, for suitably chosen n0 and δ, this is a family of equilibria. If (n, µ) /∈ S, then it
is optimal for agents to request their favorite object, as no agents are fined. If (n, µ) ∈ S,
then sending the f or nf message is immaterial, as fines are always activated since all other
players send the f message in equilibrium. Moreover, it is optimal to request one’s favorite
object (ai(1) = ti), as the probability that agents requesting objects o1 or o2 are fined are
both approximately equal to 1/2.

Note also that this family of BNE is not quasi-continuous at µ0. To see this formally,
take a neighborhood N of µ0 small enough such that the set

{µ ∈ N : ∃n with (n, µ) ∈ S} (B.17)

is relatively dense with respect to N . Any open subset Ak of this neighborhood therefore
contains infinite points in this set (B.17), and infinite points outside this set (B.17). In
particular, for any n0, there exist n ≥ n0 and µ and emp[t] in Ak where type o1 agents are
not fined, i.e., Φn

i (o1, σ
n
µ(t−i)) = (o1, 0), and similarly there exist n ≥ n0 and µ and emp[t] in

Ak where type o1 agents are fined, i.e., Φn
i (o1, σ

n
µ(t−i)) = (o1,−10). This violates Condition

2 of the definition of quasi-continuity.
Define now the direct mechanism ((F n)n∈N), T ) such that

F n(t) = Φn(σnemp[t](t)).

This is the construction used in the proof of Theorem 2. We now show that this mechanism
is neither SP-L, nor does it approximate outcomes of the σnµ equilibria. Consider a type
profile t such that (n, emp[t]) /∈ S. Then the no fine equilibrium is played and

F n
i (t) = (ti, 0).

That is, the mechanism simply assigns the requested object to each agent, and there are no
fines. However, if (n, emp[t]) ∈ S, we have

F n
i (t) = (ti,−10 · {ti = o1}).
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That is, the mechanism assigns the requested object to each agent, but only fines the ti = o1

types. This happens because the equilibria σnµ where agents send the fine message are played
exactly at the profiles where the number of o1 reports is odd, and therefore where agents
reporting o1 are fined. In contrast, agents reporting o2 are never fined. Note that, if types are
distributed according to µ0, the probability that (n, t) ∈ S converges to 1/2 as the number
of players grows. We have that the constructed mechanism has a limit

f∞i (ti, µ0) =
1

2
(o1, 0) +

1

2
(o1,−10) if ti = o1

(o2, 0) if ti = o2.

In particular, the constructed mechanism is not SP-L, as a type ti = o1 agent would
prefer to report being a type o2. Moreover, the above allocation does not approximate a
convex combination of allocations received in the sequence of families of equilibria.

C Semi-Anonymity

Our main analysis considers anonymous mechanisms, where agents’ outcomes depend on
their own report and the distribution of all reports. The analysis generalizes straightfor-
wardly, though at some notational burden, to the case of semi-anonymous mechanisms, as
defined by Kalai (2004). In this setting, agents are divided into a number of groups, and
agents within each group can be treated differently by the mechanism.

In this section, agents belong to groups g in a finite set G. The set of types is partitioned
into subsets

T = Tg1 ∪ Tg2 ∪ · · · ∪ TgG .

A semi-anonymous mechanism is defined as {(Φn)n∈N, (Ag)g∈G}, where the Ag are the
sets of actions available to each group g, and

A = Ag1 ∪ · · · ∪ AgG

is the set of actions. As in the anonymous case, the Φn are functions

Φn : An → ∆(X0
n).

The difference with respect to anonymous mechanisms is that agents in group g are
restricted to play strategies in Ag. That is, if ti ∈ Tg then the support of any strategy σ(ti)
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is contained in Ag. In a matching setting, for example, the groups may specify whether an
agent is a man or a woman, and the agent’s traits. Agents are then permitted to misreport
their preferences over other match partners, but they cannot misrepresent their gender or
their traits. Limit mechanisms are defined as in Section 3.1. In particular, we define limit
mechanisms with respect to a single distribution µ ∈ ∆T , and not distributions of types
within groups. Alternatively, one could assume that the number of agents in each group
grows in a specific way, and that types are drawn i.i.d. within each group. We now formally
define a two-sided matching mechanism, to clarify the definition.

Example C.1. (Two-Sided Matching) This example shows that semi-anonymous mecha-
nisms include matching mechanisms in two-sided markets (Gale and Shapley, 1962). Agents
are men and women, who differ on a set of traits. Groups g index both sex and the traits,
so that the set of groups is

G = {m1,m2, · · · ,mM} ∪ {w1, w2, · · · , wW}.

That is, there are M groups of men and W groups of women. Men and women within each
group have the same traits, and are equally good marriage partners. However, within each
group, agents may differ in their preferences over the other groups. The way in which the
semi-anonymous framework differs from the anonymous setting is that men and women may
misreport their preferences, but cannot misreport their sex nor traits.

Formally, agent i’s type is
ti = (gti , uti),

where gti ∈ G is the agent’s group, and uti is a strictly positive utility function over the
groups of the opposite sex. The set of outcomes X0 = G ∪ ∅. That is, each agent only cares
about which type of man (woman) she (he) is matched to, or whether she (he) is unmatched.
Utilities of each type ti are given by uti(g) if she is matched to someone of the opposite sex.
We extend uti so that it is 0 if the agent is unmatched or matched to a group of the same
sex.

Consider now a stable matching mechanism, using a tie-breaking lottery, as in school
choice mechanisms (Abdulkadiroğlu et al., 2009). The mechanism is direct, so that Ag = Tg

for each g ∈ G. Men and women report a vector of types t, and therefore traits. This implies
a weak preference ordering of each man over each woman and vice versa. The mechanism
assigns a lottery number li to each agent, uniformly and independently distributed between
0 and 1. Lottery numbers are used to break ties between preferences. That is, preferences
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are refined to strict preferences, by using the lottery numbers to break ties. Conditional
on a vector of lotteries l and a vector of reported types t, the mechanism implements a
stable matching xn(t, l). The function xn(t, l) is taken to be symmetric, to conform to the
semi-anonymity assumption. The mechanism is then defined as

Φn(t) =

∫
l∈[0,1]n

xn(t, l) dl.

Define a semi-anonymous mechanism as SP-L if no agent wants to misreport as a different
type within the same group.

Definition C.1. The semi-anonymous mechanism {(Φn)N, (Tg)g∈G} is strategy-proof in

the large (SP-L) if, for any m ∈ ∆̄T , g ∈ G, and ti, t′i ∈ Tg,

uti [φ
∞(ti,m)] ≥ uti [φ

∞(t′i,m)]. (C.1)

Equivalently, the mechanism is SP-L if, for any m ∈ ∆̄T and ε > 0, there exists n0 such
that, for all n ≥ n0, g ∈ G, and ti, t′i ∈ Tg,

uti [φ
n(ti,m)] ≥ uti [φ

n(t′i,m)]− ε.

Otherwise, the mechanism is manipulable in the large.

The sufficient conditions for a mechanism to be SP-L also have straightforward extensions.
The extension of the EF-TB condition is that no agent envies another agent in the same
group, and with lower lottery number.

Definition C.2. A direct semi-anonymous mechanism {(Φn)N, (Tg)g∈G} is envy-free but

for tie-breaking (EF-TB) if for each n there exists a function xn : (T × [0, 1])N → ∆(Xn
0 ),

symmetric over its coordinates, such that

Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl

and, for all i, j, n, t, and l, if li ≥ lj, and if ti and tj belong to the same group, then

uti [x
n
i (t, l)] ≥ uti [x

n
j (t, l)].
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With this definition, an extension of Theorem 1 to semi-anonymous mechanisms follows
from essentially the same proof.2 This implies that the stable matching procedure in example
C.1 is SP-L, because an agent envying another agent with a lower lottery number would
violate the stability condition.

We now extend the definition of limit BNE to this setting, and state and prove an
extension of Theorem B.1. The conclusions of the theorem are unchanged, and the only
difference is that it considers a family of limit equilibria of a semi-anonymous mechanism, and
not an anonymous mechanism. The proof uses a construction identical to that in Theorem
B.1. The proof follows from noting that the argument in the anonymous case implies that
the approximation formulas in Theorem B.1 hold, and then showing that this implies that
the constructed semi-anonymous mechanism is SP-L.

We must first extend the concept of a limit BNE. The difference with respect to the
anonymous case is that in the semi-anonymous case it is only necessary to rule out deviations
where agents of group g play other actions in Ag, or, in a direct mechanism, report being a
different type in Tg. A strategy is defined as a map σ : T → ∆A such that if ti ∈ Tg then
the support of σ(ti) is contained in Ag.

Definition C.3. Given a semi-anonymous mechanism {(Φn)N, (Ag)g∈G} with limit φ∞(·, ·),
and a probability distribution over types µ ∈ ∆T , the strategy σ∗µ : T → ∆A is a limit

Bayes-Nash Equilibrium at prior µ if, for all g ∈ G, ti ∈ Tg and a′i ∈ Ag:

uti [φ
∞(σ∗µ(ti), σ

∗
µ(µ))] ≥ uti [φ

∞(a′i, σ
∗
µ(µ))].

The definition of (quasi-) continuous families of limit equilibria is identical to the
anonymous case. With these definitions, the statement of the semi-anonymous version of
Theorem B.1 is similar to the anonymous case, with the key difference being the larger class
of mechanisms considered.

Theorem C.1 (Extension of Theorem B.1 to semi-anonymous mechanisms). Given any
semi-anonymous mechanism {(Φn)N, (Ag)g∈G} with a quasi-continuous family of limit Bayes-
Nash equilibria (σ∗µ)µ∈∆T , there exists a direct, SP-L, semi-anonymous mechanism {(F n)N, (Tg)g∈G}
with the following properties.

2Lemma A.1 holds as is, since it is a statement about the empirical distribution of randomly drawn
vectors of types, and therefore does not rely on the definition of a mechanism. Lemma A.2 holds for any two
types ti and t′i in the same group, using the same proof, as for any such pairs of types the EF-TB condition
in the semi-anonymous case implies the same properties as in the anonymous case. Given the two lemmas,
the argument in the proof of Theorem 1 in Appendix 1.1 holds as is, as long as we take t′i to be in the same
group as ti, which is all that is needed for the definition of SP-L for semi-anonymous mechanisms.
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1. If the original mechanism is continuous at a prior µ0 ∈ ∆̄T then, in the limit, truthful
play of the direct mechanism produces the same outcomes as equilibrium play of the
original mechanism. Formally, for any ti ∈ T , we have

f∞(ti, µ0) = φ∞(σ∗µ0(ti), σ
∗
µ0

(µ0)),

where f∞ is the limit of the direct mechanism.

2. For any prior µ0 ∈ ∆̄T , in the large market limit, truthful play of the direct mechanism
produces the same outcomes as a convex combination of equilibrium play of the original
mechanism under priors that are close to µ0. Formally, for any ε > 0, there exists n0,
an integer K, numbers πnk with

∑
k=1,··· ,K π

n
k = 1, and priors µk with ‖µk − µ0‖ < ε

such that, for all n ≥ n0 and ti ∈ T , we have

‖fn(ti, µ0)−
∑

k=1,··· ,K

πnk · φn(σ∗µk(ti), σ
∗
µk

(µk))‖ < ε,

where fn is the function representing the direct mechanism from an interim perspective,
as defined in equation (3.1).

Proof. Let F be defined as in equation (5.2). Parts 1 and 2 of the theorem statement
follow from the same argument as in the proof of Theorem B.1. This is the case because
{(Φn)N,∪g∈GAg} is an anonymous mechanism. Moreover, parts 1 and 2 do not rely on
agents playing optimally under σ∗µ, and the definitions of (quasi-) continuity of a family of
limit equilibria are the same in the anonymous and semi-anonymous case. Likewise, Lemma
B.1 holds in the semi-anonymous setting, with essentially the same proof.

It only remains to be proven that the direct mechanism is SP-L. To establish this, we
employ a small modification of the original argument, as now the σ∗µ are limit equilibria of
a semi-anonymous mechanism. As in the proof of Theorem B.1, take µ0 ∈ ∆̄T , and ε > 0.
By Lemma B.1 (with ε

2|X0| as the constant), there exist a neighborhood N of µ0, priors µk
and weights πnk for k = 1, · · · , K, and n0 such that, for all n ≥ n0 and t′i in T we have

K∑
k=1

πnk = 1, (C.2)

‖µk − µ0‖ < ε, and

‖fn(t′i, µ0)−
K∑
k=1

πnk · zk(t′i)‖ <
ε

2|X0|
≤ ε

2
,



20

where
zk(t

′
i) = φ∞(σ∗µk(t′i), σ

∗
µk

(µk)).

Take now any two types ti and t′i in the same group. We have that

uti [f
n(t′i,m)]− uti [fn(ti,m)]

≤
∑

k=1,...,K

πnk · {uti [zk(t′i)]− uti [zk(ti)]}

+|uti [fn(t′i, µ0)]− uti [
K∑
k=1

πnk · zk(t′i)]|+ |uti [fn(ti, µ0)]− uti [
K∑
k=1

πnk · zk(ti)]|.

Consider now the RHS of this inequality. From the definition of zk and of a limit equilibrium,
we have that the first sum is nonpositive. Moreover, by the bound (C.2), the fact that utility
is in [0, 1], and that the set of random bundles has X0 dimensions, the second and third terms
are each bounded by ε/2. Therefore, we have that

uti [f
n(t′i,m)]− uti [fn(ti,m)] < 0 + ε/2 + ε/2 = ε.

Since this holds for all ti and t′i in the same group, we have that the constructed semi-
anonymous mechanism is SP-L.

D Details for Table 1

This Section provides supporting details for the classification of non-SP mechanisms pre-
sented as Table 1. For each mechanism we provide a formal definition of the mechanism
in our setting, a formal proof of the classification, and relevant references. The analysis of
multi-unit auctions in Section D.1.1 is especially detailed and illustrates why the interim
approach to taking the large-market limit is crucial for obtaining the classification.

D.1 Anonymous Mechanisms.

D.1.1 Multi-Unit Auctions

We consider multi-unit auctions for identical goods, such as government bond auctions. The
two most common formats are uniform-price auctions and pay-as-bid auctions. While neither
mechanism is SP (Ausubel and Cramton, 2002), Milton Friedman famously argued in favor
of the uniform-price auction on incentives grounds (Friedman, 1960, 1991). We will show
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that uniform-price auctions are SP-L, whereas pay-as-bid auctions are manipulable in the
large.

There are kn units of a homogeneous good. To simplify notation, we assume that agents
assign a constant per-unit value to the good, up to a capacity limit. Specifically, each agent i’s
type ti consists of a per-unit value vi and a maximum capacity qi. The set of possible values
is V = {1, . . . , v̄}, the set of possible capacity limits is Q = {0, 1, . . . , q̄} with 1 < k < q̄,
and T = V × Q. The set of outcomes is X0 = ({1, 2, · · · , v̄} × {1, 2, · · · , q̄}) ∪ {0}, with
an outcome consisting either of a per-unit payment and an allotted quantity, or 0 to denote
that the agent receives no units and makes no payment.

We first describe the uniform-price auction. Bids consist of a per-unit value and a max-
imum capacity, so the action set A = T . Given a vector of n bidders’ reports t, let D(p; t)

denote the demand for the object at price p.3 The market-clearing price is

p∗(t) = max{p ∈ V :
D(p; t)

n
≥ k}. (D.1)

That is, p∗(t) is the highest price at which demand weakly exceeds supply. The uniform-price
auction allocates each bidder i her demanded quantity at p∗(t), with the exception that bids
with vi = p∗(t) are rationed with equal probability. Formally, Φn

i (t) allots each bidder the
following number of units of the good,

Reported Value Expected Number of Units
vi < p∗(t) 0

vi = p∗(t) r̄ · qi
vi > p∗(t) qi

at a price per unit of p∗(t). The probability of a bid being rationed r̄ is set to clear the
market.4

We now analyze the large-market limit of the uniform-price auction. Let ρ∗(m) denote
the price that clears supply and average demand given bid distribution m:

ρ∗(m) = max{p ∈ V : E[D(p; ti)|ti ∼ m] ≥ k}. (D.2)

3Formally, D(p; t) =
∑n

i=1 qi · 1{vi ≥ p}, where the notation 1{·} denotes the indicator function.
4Because preferences are linear up to the capacity limit, the exact form of the rationing is immaterial.

The rationing probability is

r̄ =
kn−D(p∗(t) + 1; t)

D(p∗(t); t)−D(p∗(t) + 1; t)
.
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Generically, expected demand at price ρ∗(m) strictly exceeds supply, that is,

E[D(ρ∗(m); ti)|ti ∼ m] > k.

In this generic case, as the market grows large, the realized price as defined in (D.1) equal
ρ∗(m) with probability converging to one. Therefore, the limit mechanism allocates each
bidder their demand at ρ∗(m), with the exception that bidders with value exactly equal to
ρ∗(m) are rationed, and with all winning bidders paying ρ∗(m) per unit. Formally, φ∞(ti,m)

gives player i
Reported Value Expected Number of Units
vi < ρ∗(m) 0

vi = ρ∗(m) r̄ · qi
vi > ρ∗(m) qi

at a per unit price of ρ∗(m), and the rationing probability r̄ is set so that the market clears
on average.5 Note that, in this generic case, the price in the limit is deterministic and is
exogenous from the perspective of each individual bidder.

In addition to the generic case, there is a knife-edge case, in which expected demand at
ρ∗(m) is exactly equal to supply, that is, E[D(ρ∗(m); ti)|ti ∼ m] = k. In this case, focusing
for now on m with full support, the price is stochastic even in the large-market limit. Given
large n, the realized per-capita demand at price ρ∗(m) will be weakly greater than per-capita
supply k with probability of about 1

2
, and will be strictly smaller than per-capita supply k

with probability of about 1
2
.6 Therefore, the price in the limit will be ρ∗(m) with probability

of 1
2
, and ρ∗(m)−1 with probability of 1

2
. φ∞(ti,m) assigns to player i the following expected

number of units,

Reported Value Expected Number of Units
vi < ρ∗(m) 0

vi ≥ ρ∗(m) qi

and prices are ρ∗(m) or ρ∗(m) − 1 with equal probability. Note that bids of ρ∗(m) are not

5That is, r̄ satisfies

r̄ =
k − E[D(ρ∗(m) + 1; t′i)|t′i ∼ m]

E[D(ρ∗(m); t′i)|t′i ∼ m]− E[D(ρ∗(m) + 1; t′i)|t′i ∼ m]
.

6The intuition is that if a fair coin is tossed n→∞ times, the probability that at least n/2 of the tosses
are heads converges to 1/2, just as the probability that less than n/2 of the tosses are heads converges to
1/2, with both probabilities independent of the outcome of the ith toss.
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rationed in the limit. This is so because, in this knife-edge case, average demand is exactly
equal to average supply. Moreover, in both cases the price in the limit is exogenous from
the perspective of each individual bidder. Even though the price is sometimes ρ∗(m) and
sometimes ρ∗(m) − 1, the probability that bidder i is pivotal in determining which of the
two prices occurs converges to zero.

The argument that the uniform-price auction is SP-L is now straightforward. Choose
any type ti and any full support distribution m ∈ ∆̄T . The description of φ∞ above implies
that truthful reporting is a dominant strategy in the limit, hence Definition 4 is satisfied.

Note that this argument would not go through had we used a stronger notion of approx-
imate strategy-proofness based on realizations of opponents’ reports rather than probability
distributions. In any size market, it is always possible to construct a profile of opponent
bids t−i where, ex-post, bidder ti can profitably lower the market-clearing price by shading
his quantity demanded. Similarly, our argument would not go through if SP-L required
equation (3.2) to obtain for all probability distributions m ∈ ∆T , rather than for all full
support probability distributions m ∈ ∆̄T . Full support ensures that the probability that
any particular bidder is pivotal goes to zero as the market grows large. See Swinkels (2001;
Section 5) for an elegant example, with limited support, in which bidders remain pivotal
with probability one even in very large markets.

Last, we turn to the pay-as-bid auction. The pay-as-bid auction allocates units of the
good in exactly the same way as the uniform-price auction. The difference is that winning
bidders pay their bid instead of the market-clearing price p∗(t). Clearly, bidders will gain
from misreporting their value, even in the large-market limit. If the distribution of opponent
bids is m and the limit price is ρ∗(m), then a bidder of type ti = (vi, qi) with vi > ρ∗(m) + 1

strictly prefers to misreport as t′i = (ρ∗(m) + 1, qi): he receives the same allocation in the
limit but pays a strictly lower price per unit. Hence, the pay-as-bid auction is not SP-L.

D.1.2 Single-Unit Assignment

In single-unit assignment problems, each agent is to be assigned at most one indivisible
object, and there are no transfers. We refer the reader to Kojima and Manea (2010) and
references therein for a detailed description of the environment and applications.

Formally, we define single-unit assignment as follows. Denote the set of object types by
X0. In a market of size n there are {qx0 · n} units of object type x0 available.7 An agent
of type ti ∈ T has a strict utility function uti over X0. It is assumed that X0 includes a

7A bracketed expression denotes the nearest integer to the real number within brackets.
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null object ∅, in supply n−∑
x′0 6=∅
{qx′0 · n} ≥ 0, so that the total quantity of objects equals

n. The utility of the null object is normalized to 0. Therefore, we assume that all agents
strictly prefer any other object (termed a proper object) to the null object.

Boston Mechanism

The Boston mechanism is a mechanism used in many cities to allocate seats in public
schools. Abdulkadiroğlu and Sönmez (2003) show that the Boston mechanism is not SP, and
Abdulkadiroğlu et al. (2006) document that it was extensively manipulated in practice. We
now formally define the Boston mechanism and show that it is not SP-L. This complements
an example given by Kojima and Pathak (2009), in a formally different environment, where
the Boston mechanism can be manipulated in a large market.

We now define the Boston mechanism. Fix a vector of reports t. To be consistent with the
literature we will use the terminology of schools (the objects) and students (the agents). The
mechanism first assigns to each student a lottery number li, uniformly and independently
distributed in [0, 1]. The mechanism then proceeds in rounds, following the algorithm below.

1. The mechanism begins in round = 1. All students are initially unassigned.

2. Students that are still present in the mechanism take turns, in the order of their lottery
number, with higher lottery numbers going first. In her turn student i is permanently
assigned to her roundth choice, as given by uti , if there are still seats in that school,
or remains unassigned otherwise.

3. If all students have been assigned, finish, otherwise increase round by 1 and go to Step
2.

Note that the algorithm must finish, as eventually all students are assigned either to a proper
school or to the null school x0 = ∅. Therefore, conditional on a vector of types t and lottery
numbers l the mechanism produces a well-defined outcome xn(t, l). Before lottery draws,
the mechanism is defined as

Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl.

We now show that the Boston mechanism is not SP-L. Consider an economy with two
proper schools, x0 = A,B, and the null school x0 = ∅, corresponding to being unmatched.
That is, X0 = {A,B, ∅}. Let qA = qB = 1/6. Consider a distribution m ∈ ∆̄T such that 2/3

of the agents prefer school A, while only 1/3 prefer school B. Then, in a large market, the
proper schools are filled in the first round with probability close to 1. Therefore, an agent
has a negligible chance of getting her second choice. The chance of getting her first choice
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is (1/6)/(2/3) = 1/4 for school A and (1/6)/(1/3) = 1/2 for school B. That is, the limit
mechanism is

φ∞(ti,m) =
1

4
· A+

3

4
· ∅ if uti [A] > uti [B]

1

2
·B +

1

2
· ∅ otherwise. (D.3)

Note in particular that an agent who prefers school A faces a tradeoff when reporting her
preferences. If she announces that she prefers school A, she will be assigned to it with 1/2

the chance she has of receiving school B. Therefore, it is not optimal for an agent with
uti [A] > uti [B] > uti [A]/2 to report truthfully.

Probabilistic Serial Mechanism

The probabilistic serial mechanism has been proposed as a solution to the assignment
problem by Bogomolnaia and Moulin (2001). The mechanism works as follows. With time
running continuously, agents “eat” probability shares of their favorite object, out of all objects
still available. After probability shares of all objects are assigned, the objects are randomly
assigned to agents according to these probabilities. We refer the reader to Kojima and Manea
(2010) page 110 for a formal definition of the mechanism, as their analysis includes ours as
a particular case.

Bogomolnaia and Moulin (2001) show that the mechanism is EF. Consequently, Theorem
1 guarantees that it is SP-L. Note that the fact that this mechanism is SP-L is a particular
case of Kojima and Manea’s Theorem 1.

Hylland and Zeckhauser Pseudo-Market Mechanism

Hylland and Zeckhauser (1979) proposed a pseudo-market mechanism for single-unit
assignment, in which agents are endowed with equal budgets of an imaginary currency which
they use to purchase probability shares of the objects. The mechanism works as follows.
First, agents report their types, t. Second, the mechanism allocates each agent an equal
budget B > 0 of an artificial currency. Third, the mechanism computes a competitive
equilibrium price vector p∗ ∈ R|X0|

+ . That is, a vector of prices, one for each object type,
such that when each agent is allocated her most-preferred affordable bundle of probability
shares, based on her reported preferences, the market clears. Last, each agent is allocated
her most-preferred affordable bundle at p∗, given her reported preferences. We refer the
reader to the original paper for full details.

Hylland and Zeckhauser (1979) prove existence of competitive equilibrium prices in a
setting that is strictly more general than ours (in particular, they allow for indifferences).
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For each market size n and each possible reported vector of types t ∈ T n, choose one such
price vector in an anonymous manner, and use this price vector to define the resulting
allocation Φn(t). As Hylland and Zeckhauser (1979) observe on page 307, since each agent
has the same budget and faces the same prices, such a mechanism is EF. Consequently,
Theorem 1 guarantees that it is SP-L.

D.1.3 Multi-Unit Assignment

In multi-unit assignment problems, each agent is to be assigned a finite number of indivisible
objects. Transfers of a numeraire are not allowed. A prototypical application is the allocation
of courses to students at business schools. For further details we refer the reader to Budish
(2011).

Denote the finite set of object types by J . Each object j is available in supply {qj · n}.
A bundle x0 ∈ X0 = P(J) specifies a subset of the object types.8 A type ti specifies a utility
function uti over bundles. We will adopt the terminology of course allocation, denoting
object types by courses, and agents by students.

HBS Draft Mechanism

The mechanism used by Harvard Business School to allocate MBA courses was studied
empirically by Budish and Cantillon (2012). Using survey data, they showed that students
often misreport their preferences. Here we formally define the mechanism and show that it
is not SP-L.

The HBS draft mechanism does not allow students to express preferences over bundles
of courses. Instead, students submit a preference ordering over single courses. To examine
the possibility of truthful reporting, we restrict our attention to preferences over bundles
that are responsive to preferences over individual courses, with preferences over individual
courses strict. We will say that a student of type ti prefers course jA to course jB if she
prefers a bundle consisting only of course jA to a bundle consisting only of course jB, that
is, uti({jA}) > uti({jB}).

The HBS draft mechanism works as follows. First, each student is assigned a lottery
number li, uniformly distributed in [0, 1]. In the first round, students take turns ordered by
their lottery number, with higher lottery numbers going first. At her turn, student i chooses
her favorite course out of the ones that are still available. In round two, the same procedure
is repeated, but with students with lower lottery numbers going first. The procedure is
repeated in the following rounds, with higher lottery numbers going first in the odd rounds

8P(J) denotes the power set of J .



27

and last in the even rounds. The mechanism ends after k rounds, where k is the number of
courses required per student.

To see that this mechanism is not SP-L, consider the following example based closely on
Example 1 of Budish and Cantillon (2012). There are 4 proper courses, J = {jA, jB, jC , jD},
of which students require k = 2 courses each. Each course has capacity for 2

3
of the pop-

ulation, that is qj = 2
3
for each j ∈ J . Consider a probability distribution over students’

reports where 1
3
of the population lists courses in the order jA, jB, jC , jD, 1

3
lists courses in

the order jB, jA, jC , jD, and 1
3
lists courses in the order jA, jC , jD, jB. Given this distribution

of reports, the probability that course jA reaches capacity either in the end of the first round,
or early in the second round converges to 1, as the market grows large. Therefore, a student
that ranks course jA as her first choice has probability close to 1 of receiving it, while a
student who ranks jA second has probability close to 0 of receiving it. In contrast, course jB
is very likely to reach capacity either late in the second round, or early in the third round,
in a large market. Consequently, a student who ranks course jB either first or second is very
likely to receive it. For this reason, a student whose true preference order is jB, jA, jC , jD
profits by misreporting as jA, jB, jC , jD. By doing so, the student receives both jA and jB,
her two favorite courses, rather than courses jB and jC if she reports truthfully.9

The Bidding Points Auction Mechanism

The bidding points auction mechanism is used by several business schools to allocate
MBA courses. It has been described by Sönmez and Ünver (2010) and Krishna and Ünver
(2008), who demonstrated that the mechanism is flawed in several important ways, despite
its widespread use. We now define the bidding points auction mechanism and show that it
is not SP-L.

The mechanism works as follows. Students report vectors of bids, with one bid per course.
Students can only spend up to a budget of B points, so that the set of actions is the set of
all vectors of bids that sum to at most B. We restrict the bids to be integers, so that

A = {ai ∈ {0, 1, · · · , B}J+ :
∑
j

ai,j ≤ B}.

Given a vector of bids, the mechanism starts with the highest bid and allocates the course
to the student, as long as the course still has capacity. Ties are broken randomly.

To examine the possibility of truthful reporting, we assume that students’ preferences are

9This particular profitable misreport is valid for any cardinal preferences consistent with the ordinal
preferences jB , jA, jC , jD. In other examples the profitability of a particular misreport might depend on
cardinal preference information.
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additive, meaning that their utility for a bundle of courses is the sum of their utilities from
the component courses in that bundle. This allows us to interpret a student’s bid vector as
an expression of their individual course preferences, and allows us to interpret the bidding
points auction as a direct mechanism with T = A.

Consider the case where there are three courses, J = {jA, jB, jC}. Consider an agent who
likes the three courses jA, jB, jC equally, and derives no utility of being unmatched. That is,

uti(jA) = uti(jB) = uti(jC) = B/3,

uti(∅) = 0. (D.4)

Consider a distribution of play m, such that, in the large-market limit, the last accepted bid
for the courses jA, jB, jC is 2B/3 with very high probability. In that case, the agent should
not report her true preferences, with bids equal to her utility. If bids are given by equation
(D.4), then with very high probability the agent does not receive any course. If instead she
bids B for one of the courses she likes, and 0 for the others, she receives at least one of the
courses. Therefore, the mechanism is not SP-L.

Approximate Competitive Equilibrium from Equal Incomes (A-CEEI)

Budish (2011) proposed a pseudo-market mechanism for multi-unit assignment problems.
Budish’s setting is a strict generalization of ours. For that reason, we do not repeat all formal
definitions, and refer the reader to the original paper for further details. In our setting, the
A-CEEI mechanism can be defined as follows. First, assign each student a lottery number
li uniformly and identically distributed in [0, 1]. Then give each student a budget in an
imaginary currency of 1 + li · β(n), where β(n) is a strictly positive constant that is weakly
decreasing in n, as defined in Budish (2011) page 1081. Budish’s Theorem 1 guarantees that
given these budgets there exists an approximate competitive equilibrium of the economy
where agents purchase courses using the imaginary currency. The A-CEEI mechanism selects
one such equilibrium, anonymously, and gives each agent his equilibrium allocation. This
defines a function xn(·, ·) giving an assignment of bundles xn(t, l) ∈ Xn

0 , for each vector of
types t and lottery draws l. The A-CEEI mechanism is defined as

Φn(t) =

∫
l∈[0,1]n

xn(t, l)dl.

To show that this mechanism is SP-L, we use Theorem 1. By the definition of approximate
competitive equilibrium (Budish’s Definition 1), after lotteries are drawn, no agent envies
another agent with a lower lottery number. Therefore, the CEEI mechanism is EF-TB, and
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therefore SP-L.
The Generalized Hylland and Zeckhauser Pseudo-Market

Budish et al. (2013) have proposed an extension of the Hylland and Zeckhauser pseudo-
market mechanism that can be used for multi-unit assignment problems. In the simplest
setting they consider, students have additive preferences over courses. We therefore assume
that T only includes additive preferences. With this assumption, their setting is a strict
generalization of ours. Budish et al. (2013) then formally define the mechanism. It works
similarly to the Hylland and Zeckhauser mechanism, with students purchasing probability
shares of courses using a fake currency. The mechanism then calculates a competitive equi-
librium allocation of probability shares. Finally, the mechanism implements a lottery over
allocations that gives each agent her equilibrium probability share. Budish et al.’s Theorem
6 and Corollary 3 guarantee that the mechanism is well-defined, as both an equilibrium ex-
ists and can be implemented by a lottery over feasible assignments. Budish et al.’s Theorem
8 shows that the mechanism is envy-free. Along with our Theorem 1, this implies that the
mechanism is SP-L.

D.1.4 Exchange Economies

Walrasian Mechanism

A Walrasian mechanism implements competitive equilibrium allocations in an exchange
economy. Several contributions in the literature have considered approximate incentive com-
patibility of Walrasian mechanisms in large markets, including the classic paper by Roberts
and Postlewaite (1976). We refer the reader to Jackson and Manelli (1997) for an overview
and references. We note that this example has an infinite set of bundles X0, which does not
fit the framework in the body of the paper. However, the mechanism fits the more general
framework considered in Appendix 1.1.2, which allows us to use Theorem 1 to classify it as
SP-L.

We consider an exchange economy with J goods. A type ti = (eti , vti) specifies

• An endowment vector eti ∈ RJ
+.

• A continuous utility function vti over bundles of goods in RJ
+, taking values in [0, 1].

Assume that the finite set of types T is such that, for any finite n and type vector t ∈ T n,
there always exists at least one competitive equilibrium where all agents of the same type
receive the same bundle. This is guaranteed under standard assumptions on the set of utility
functions and endowment vectors.
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Given a type ti, we define the utility function uti over net trades x0 ∈ RJ as

uti = vti(eti + x0) if eti + x0 ∈ RJ
+

−∞ if eti + x0 /∈ RJ
+.

We let X0 be RJ , the set of all possible vectors of net trades.

Having defined X0 and T , we now define the mechanism. For all n, t, Φn(t) anonymously
selects a competitive equilibrium allocation of an economy with the n agents of types in the
vector t, such that agents of the same type receive the same bundle, and assigns each agent
i her vector of net trades in that equilibrium.

Note that the Walrasian mechanism is EF, as each agent receives her preferred vector of
net trades given prices. Furthermore, while X0 is not finite, it does satisfy the more general
assumptions in Remark 1. Namely, X0 is a measurable subset of Euclidean space, utility is
measurable and bounded above by 1, and the utility of telling reporting truthfully is at least
0. Therefore, by Theorem 1, the Walrasian mechanism is SP-L.

D.2 Semi-Anonymous Mechanisms

Semi-anonymity generalizes anonymity to allow a mechanism to treat agents differently if
they belong to identifiably distinct groups. Examples include treating men and women
differently in a matching mechanism, and treating buyers and sellers differently in a double
auction. While the body of the paper deals with the notationally simpler case of anonymous
mechanisms, semi-anonymous mechanisms are analyzed in Appendix C. This subsection
classifies some of these mechanisms.

D.2.1 Double Auctions

Double auctions have been extensively studied as a simplified model of price formation. We
consider auctions where buyers and sellers submit bids, and prices are given as the average
of marginal winning and losing bids. See for example Rustichini et al. (1994) for further
details and references.

Types ti specify whether an agent is a potential buyer or seller, and a value. That is,
types specify the agent’s group, which is gti = b(uyer) or s(eller), and her value for the
object, which is vti . Sellers are endowed with a unit of the object, while buyers are not.
The set of types is T = G × V , with G = {b, s} and V = {1, · · · , v̄}. A bundle x0 specifies
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whether the agent trades or not, with a dummy dx0 = 0 or 1, and the price of the transaction

px0 ∈ P = {(p′ + p′′)/2 : p′, p′′ ∈ V }.

We have X0 = {0, 1}×P . Buyers and sellers have quasilinear utility. The utility of a bundle
is 0 if the agent does not trade. If the bundle prescribes a trade, utility is vti − px0 for a
buyer, and px0 − vtifor a seller.

The mechanism works as follows. Given t, let ns(t) be the number of sellers, and therefore
the number of objects. The market clearing price is the average of the ns(t)st and ns(t)+1st

highest valuations. The mechanism assigns bundles x0 with this price to all agents. The
objects are assigned to the agents with the ns(t) highest valuations, with uniform tie-breaking
for agents tied with the lowest winning valuation. Formally, the mechanism Φn(t) assigns
bundles x0 specifying trade to all buyers with valuations higher than the price, all sellers
with valuations lower than the price, and randomly rations agents with valuations equal to
the price.

Note that the mechanism is envy-free. This is so because all agents pay the same price,
and therefore do not envy the price paid by other agents. Moreover, at this price, agents
who trade with probability 1 would rather trade than not trade, and likewise agents that
trade with probability 0 would rather not trade. Agents that are rationed are indifferent
between trading or not trading, and therefore the mechanism is envy-free.10 Therefore,
double auctions are SP-L.

D.2.2 Matching

This setting is defined formally in Section C, Example C.1. That section also defines stable
matching mechanisms, which are shown to be SP-L using a semi-anonymous version of the
EF-TB condition.

Priority Match

Priority match mechanisms are described by Roth (1991), who proved that these mech-
anisms can produce unstable outcomes. Roth also documented that labor market clearing-
houses using priority matching mechanisms were very likely to fail, and hypothesized that
the reason why they failed is that they produce unstable outcomes.

The priority match works as follows. Given a man i (woman) and a woman (man) j
define the rank of i on j’s preferences as 1 plus the number of men (women) who are strictly

10Note that agents are only rationed in the case of a tie between the marginal winning and losing bids,
and therefore both of these bids equal the price.
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preferred to i. Assign to the pair i, j the priority pi,j equal to the rank of the man in the
woman’s preferences, times the rank of the woman in the man’s preferences. The mechanism
then proceeds by matching pairs with the lowest priorities first, breaking ties randomly.

To see that the priority match mechanism is not SP-L, consider the case where there is
a single trait for men. Then women are indifferent over all men. In this case, the priority
match mechanism coincides with the Boston mechanism, which is not SP-L.

It is interesting to note that Roth (1991) conjectured that the reason why stable matching
mechanisms seem to succeed in practice, while priority matching mechanisms lead to unrav-
elling and market failures, is stability. Our analysis, however, shows that stable matching
mechanisms are SP-L, while priority matching mechanisms are not. Therefore, Roth’s em-
pirical finding can be phrased equivalently as saying that SP-L mechanisms succeed while
non SP-L mechanisms fail.
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