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Empirical Bayes Estimation of Treatment Effects with Many A/B 
Tests: An Overview†

By Eduardo M. Azevedo, Alex Deng, José L. Montiel Olea, and E. Glen Weyl*

The use of   large-scale experimentation to 
screen innovations is increasingly common. 
Large internet companies run thousands of 
experiments, called A/B tests, to test product 
improvements. In academia and policy, ran-
domized controlled trials are widely used, from 
finding better   anti-poverty interventions to 
designing nudges.

This is a practical guide on how to use treat-
ment effect estimates from a large number of 
experiments to improve estimates of the effects 
of each experiment. This is a common practical 
issue in the technology industry. When thou-
sands of new features are A/B tested, the win-
ners tend to be a combination of good features 
and features that got lucky experimental draws.1 
Empirical Bayes methods (Robbins 1964) are 
a commonly used tool in statistics to separate 
good features from lucky draws (Efron 2012). 
We do not report any novel results. Instead we 
give a   user-friendly overview of both classic and 
recent approaches to this problem.2

1 Efron (2011) refers to this phenomenon as “selection 
bias” or “winner’s curse.”

2 See Athey and Imbens (2017) for a survey of the econo-
metrics of experiments and Berman et  al. (2018) and Feit 
and Berman (2018) for other recent work on the practice of 
A/B testing.
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I. Empirical Bayes Estimation and the 
Importance of Fat Tails

We consider a simplified version of the A/B 
testing problem proposed by Azevedo et  al. 
(2019). A firm has ideas  i = 1, 2, … , I . In 
internet applications, ideas are features that can 
be implemented in a product. Idea  i  has true 
quality   Δ i   . In applications, the true quality is 
how much the idea improves some performance 
metric, such as   click-through rate or revenue. 
True quality is the population causal treatment 
effect of implementing an idea.

The firm does not know the true quality, but 
has a prior distribution  G  over it, and quality 
is independent across ideas. The distribution  G  
captures the firm’s uncertainty about the true 
quality, but it also models the heterogeneity in 
idea quality in the population.

For each idea, the firm performs an experi-
ment, or A/B test, with  n  users. The experiment 
yields an estimated quality    Δ ˆ   i   . The estimated 
quality is an estimated treatment effect. We 
assume that estimated quality is normally dis-
tributed with mean   Δ i    and variance   σ   2 /n . This 
is reasonable because of randomization and 
because of the large samples used by internet 
companies. The firm chooses which ideas to 
implement to maximize the expected sum of 
the quality of the implemented ideas, minus an 
implementation cost of  c  per implemented idea. 
Realizations of the random variables   Δ i    and    Δ ˆ   i    

are denoted   δ i    and    δ ˆ   i   .
Azevedo et al. (2019) show that the optimal 

choice of which ideas to implement is simple. 
The firm should use Bayes’ rule to calculate 

 E [ Δ i   |   Δ ˆ   i   = x]  , which we denote as the posterior 

mean quality function  P (x)  . The optimal choice 
is for the firm to implement the ideas for which  

P (  δ ˆ   i  )   is greater than the implementation cost 

 c . Therefore, the posterior mean quality  function  
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P ( ⋅ )   is the key object for making optimal 

 implementation decisions. We term  P (  δ ˆ   i  )   the 
unfeasible Bayes estimator of quality, because 
it depends on knowing the prior  G . In practice, 
the firm has to estimate the prior  G  from data on 
past experiments, a problem that we discuss in 
the next section.

For now, we will show that the shape of the 
posterior mean depends crucially on the tails of 
the distribution of ideas. There is evidence that 
the effects of innovations are   fat-tailed in data 
from Microsoft’s Bing search engine (Azevedo 
et al. 2019), Facebook (Coey and Cunningham 
forthcoming; Peysakhovich and Eckles 2018; 
Peysakhovich and  Lada 2016), and eBay 
(Goldberg and  Johndrow 2017). Moreover, 
Azevedo et  al. (2019) show that outlier ideas 
account for a large share of the gains, even in 
a mature product like Bing. This suggests that 
it is important to take into account the potential 
existence of fat tails.

Figure 1 displays the posterior mean func-
tion for different priors  G . The   fat-tailed   
 t -distribution prior has parameters close to the 
benchmark empirical estimates from Azevedo 
et al. (2019), who considered percentage perfor-
mance improvements in the Bing search engine. 
The normal prior is a normal distribution with 
the same mean and scale parameters, but thin 
tails. Finally, the normal prior with matched 
moments was chosen to roughly match the mean 
and variance in the Bing data. The standard error 
0.0224 roughly matches a typical Bing experi-
ment with 20 million users.

The examples make three points. First, 
whether we are in the thin or   fat-tailed cases 
makes a large difference in the shape of the pos-
terior mean function  P ( ⋅ )  . With the   fat-tailed 
Student- t  prior, estimates with small  t -statistics 
should be aggressively shrunk. The intuition 
is that, because typical innovations have small 
effects, it is very likely that these experiments 
were just lucky draws. This is true even for 
marginally statistically significant experiments. 
In contrast, outliers should not be shrunk very 
much. The reason is that, with fat tails, it is 
much more likely that these outliers are real 
effects than lucky experimental draws. In con-
trast, with the normal priors, the posterior mean  
P ( ⋅ )   is linear. Therefore, incorrectly assuming 
that the prior is normal can result in large biases 
in the estimated posterior mean quality.

Second, posterior mean quality  P ( ⋅ )   can be 
calculated with standard Bayesian statistics.3 
Therefore, it is simple to implement this type of 
Bayes estimate in industry and research settings. 
Azevedo et al. (2019) show that optimal imple-
mentation can substantially improve on the 
common practice of implementing ideas with 
estimated quality that is statistically significantly 
positive at the 5 percent level. Consider the 
Student- t  prior in Figure 1. The optimal imple-
mentation strategy can be read off the figure: 
implement ideas for which the posterior mean  
P  is above  c . With zero implementation cost, it 
is optimal to implement all ideas with positive 
effect with  t -statistic of 0.47, which corresponds 
to a   p-value of 32 percent. With an implementa-
tion cost of equivalent to a 0.01 percent gain in 
quality, it is optimal to implement all ideas with 
a  t -statistic of at least 2.39, which corresponds 

3 Namely, Bayes’ rule implies that

 P (x)  =   
∫ y ⋅ g (y)  ⋅ φ (  

y − x
 _ σ/  √ 

_
 n  
  )  𝑑y
  __________________  

∫ g (y)  ⋅ φ (  
y − x

 _ σ /  √ 
_

 n  
  )  𝑑y

   .

Figure 1. Posterior Mean Quality as a Function of 
Estimated Quality Under Different Priors

Notes: The Student- t  prior has mean −0.0009, scale param-
eter 0.0030, and degrees of freedom parameter 1.3090. The 
normal prior has the same mean and scale parameters. The 
normal (matched moments) has mean −0.0012 and standard 
deviation 0.0182, which were chosen to be consistent with 
the mean −0.0012 and variance of experimental estimates 
in the data on Bing experiments analyzed in Azevedo et al. 
(2019). They considered percentage improvements in a key 
metric. The standard error 0.0224 roughly matches a typical 
Bing experiment with 20 million users.
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to a   p-value of 0.85 percent. That is, because 
  non-outliers are likely to be lucky experimental 
draws, even small implementation costs make it 
optimal to use a small   p-value cutoff for imple-
mentation. Moreover, because the outliers are 
not shrunk very much, the threshold  t -statistic 
goes up slowly if implementations costs are 
even larger. For example, with an implemen-
tation cost equivalent to a 0.05 percent gain in 
quality, it is optimal to implement all ideas with 
a  t -statistic of at least 3.61. That is, multiplying 
the implementation cost by 5 only increases the 
optimal threshold  t -statistic by 50 percent.

Third, it is important for firms to evaluate 
whether they are in the   thin-tailed or   fat-tailed 
case. Understanding the tails gives useful intu-
ition for how to interpret estimation results and 
it can also be useful for the design of A/B tests. 
For example, Azevedo et  al. (2019) show that 
both the optimal implementation strategy and 
the optimal experimentation strategy in the A/B 
testing problem depend on the tails of the prior. 
From a practical perspective, this suggests that 
one of the first questions firms should ask is 
whether they are in the fat or   thin-tailed case. 
This seems like a reasonable first step, before 
more sophisticated data analysis and before 
building a system to calculate  P ( ⋅ )  .

II. Estimation Approaches

So far, we considered optimal decisions tak-
ing the prior distribution  G  of quality as given. 
In practice, the prior has to be estimated from 
data on quality estimates in previous exper-

iments,   (  δ ˆ   1  , … ,   δ ˆ   I  )  , and on standard errors 
  ( σ 1   /  √ 

_
  n 1    , … ,  σ 1  /  √ 

_
  n I    )  , which we now allow to 

vary across observations. There are a number of 
approaches to this problem that can be used in 
industry and research settings. We now review 
some of the techniques and recent applications.

A. Parametric Empirical Bayes

Maximum Likelihood Estimation.—Suppose 
first that  g  is known up to a   finite-dimensional 
parameter  β .4 Under the independence 

4 For example,  g  can be the pdf of the random variable  
M + s t α   , where   t α    is a  t -distribution with  α > 1  degrees of 
freedom, and  β =  (M, s, α)  .

 assumption it is possible to write a parametric 

likelihood for the data   (  δ ˆ   1  , … ,   δ ˆ   I  )   which can be 
maximized with respect to  β . This is the esti-
mation strategy used by Azevedo et al. (2019).5

The empirical Bayes estimator of the unob-
served quality of idea  i  incorporates the infor-
mation available on the estimated effects of 
other A/B tests by computing the posterior 
mean quality based on the estimated prior distri-
bution  g (  β ˆ   MLE  )  . The estimator    β ˆ   MLE    is based on 
independent,   non-identically distributed data as 
in Hoadley (1971). Thus, under some regularity 
conditions,    β ˆ   MLE    is consistent and asymptoti-
cally normal as the number of A/B tests grows 
large. This means that the posterior mean qual-
ity function based on  g (  β ˆ   MLE  )   will eventually be 
close to  P( ⋅ ) .

Deng (2015) uses a similar approach. He 
assumes that the prior is a mixture of a normal dis-
tribution and a point mass at zero, and estimates 
it using an   expectation-maximization algorithm.

Bayesian Estimation.—Since there is a para-
metric likelihood for the data, it is also possible 
to estimate  β  by standard Bayesian methods. For 
example, Goldberg and  Johndrow (2017) esti-
mate the parameters of a Student- t  prior from 
A/B tests performed at eBay during 2016. They 
use the Markov chain Monte Carlo (MCMC) 
implementation of the hierarchical model given 
by the distribution of    Δ ˆ   i   |  Δ i    and   Δ i    using Stan. 
The posterior mean function can be approxi-
mated as in Azevedo et al. (2019), but replacing 
the maximum likelihood estimator by the pos-
terior mean of  β . One advantage of their esti-
mation procedure is that it can be carried out 
using   off-the-shelf software in MATLAB or the 
language R.

Lindsey’s Method.—Consider the case where 
the standard error  σ /  √ 

_
 n    is constant across 

experiments. A result known as Tweedie’s for-
mula (Robbins 1956; Efron 2011, p. 1602) 
implies that the posterior mean quality equals

(1)  P (  δ ˆ   i  )  =   δ ˆ   i   +    σ   2  _ n   
(

  d ___ 
d   δ ˆ   i  

   log m (  δ ˆ   i  ) 
)

 , 

5 MATLAB programs to implement their esti-
mation strategy can be found at https://github.com/
eduardomazevedo/  ab-empirical-bayes.

https://github.com/eduardomazevedo/ab-empirical-bayes
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where  m (  δ ˆ   i  )   denotes the marginal density of    δ ˆ   i   .
The usefulness of Tweedie’s formula is that 

the posterior mean can be computed without 
knowing the prior density  g , as only the mar-
ginal density  m  enters equation (1). A common 
approach to estimate  m  using quality estimates 
of many A/B tests is Lindsey’s method; see sec-
tion 5.2 of Efron (2012). Broadly speaking, the 
idea consists of modeling  m ( ⋅ )   as the exponen-
tial of a polynomial with coefficient vector  β . 
Instead of choosing  β  directly as the Maximum 
Likelihood estimator, Lindsey’s method approx-
imates the maximum likelihood estimator by 
using a Poisson regression. Lindsey’s method 
can also be viewed as a nonparametric smooth-
ing estimator; see Efron and Tibshirani (1996). 
The Poisson regression can be implemented 
using the program locfdr2 in R.

B. Nonparametric Empirical Bayes

General Maximum Likelihood Empirical 
Bayes Estimation.—Jiang and  Zhang (2009) 
have suggested a nonparametric maximum like-
lihood approach to use the information of many 
quality estimates with Gaussian experimental 
noise. Their approach consists of writing the 
marginal density in terms of an arbitrary dis-
tribution  G , and then choosing  G  (an infinite 
dimensional parameter) to maximize the mar-
ginal likelihood. This suggestion has its roots 
in the seminal work of Kiefer and  Wolfowitz 
(1956). The General Maximum Likelihood 
Empirical Estimator is simply the posterior mean 
of the innovation quality, based on the estimator  
of  G .

Experiment Splitting.—More recently, Coey 
and Cunningham (forthcoming) suggest a meth-
odology for performing nonparametric empirical 
Bayes estimation without explicitly estimating 
the prior distribution of innovation quality. Their 
idea is to split each A/B test (randomly) into two 
subexperiments (each with their own treatment 
and control group). Their approach consists of 
predicting the estimated treatment effect in the 
first subexperiment, on the estimated treatment 
effect of the second subexperiment. The predic-
tion algorithm can be a simple linear regression 
(possibly incorporating some other variables pre-
dictive of treatment), but could also be any other 
flexible method that allows for  nonlinearities and 
selection of covariates (such as the Lasso).
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