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Abstract

The first-order approach (FOA) is the main tool in the study of the pure moral

hazard principal-agent problem. Although many existing results rely on the FOA,

its validity has been established only under relatively restrictive assumptions. We

contribute three main findings.

First, we demonstrate in a broad array of examples that the FOA frequently fails

when the agent’s reservation utility is low (such as in principal-optimal contracts).

However, the FOA holds when the agent’s reservation utility is at least moderately

high (such as in competitive settings where agents receive high rents).

Second, our main theorem formally shows that the FOA is valid in a standard

limited liability model when the agent’s reservation utility is sufficiently high. The

theorem also establishes existence and uniqueness of the optimal contract.

Third, we use the FOA to derive tractable optimal contracts across a broad array

of settings. These contracts are both simple and intuitive, and under log utility, they

are piecewise linear for numerous common output distributions (including Gaussian,

exponential, binomial, Gamma, and Laplace).
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1 Introduction

One of the workhorse models in economics and related fields is the principal-agent prob-
lem with moral hazard. The principal hires the agent to take an action a in R+ that affects
the distribution of output y. The principal can only condition payments on realized out-
put, and designs a contract w(y) to provide incentives to the agent. The agent chooses the
action a to maximize her utility from wages minus her cost of effort,

E [u(w(y))|a]− c(a),

and the principal chooses the contract to maximize expected profits.
The main solution method for this problem is the first-order approach, which assumes

that only local deviations in a are binding. This yields a tractable, calculus-based for-
mula for the optimal contract (see Holmström (1978) and the excellent survey Georgiadis
(2022)). Many results in the literature rely on the first-order approach, even though Mir-
rlees (1999) (circulated in 1975) showed it is not always valid. In applied work, restrictive
assumptions such as linear contracts or binary effort are often made to avoid this issue.1

Unfortunately, existing sufficient conditions for the first-order approach are restric-
tive. The seminal papers are Rogerson (1985) and Jewitt (1988), followed by an extensive
literature.2 Kadan, Reny, and Swinkels (2017) summarize the general view that “condi-
tions facilitating the first-order approach are typically quite demanding”. The key issues
are elegantly explained by Chaigneau et al. (2022) and Conlon (2009). They explain that
the sufficient conditions require contracts to be close to concave, precluding common con-
tracts such as compensation with stock options.3

1Examples of papers assuming the first-order approach include, to cite a few, Jewitt et al. (2008); Mo-
roni and Swinkels (2014); Chaigneau et al. (2022). Virtually all early work, including the seminal papers
by Holmström (1978, 1979), and Zeckhauser (1970) assumes it. Holmström (1979) notes that “one has to
assume that the agent’s optimal choice of action is unique for the optimal [...] This assumption seems very
difficult to validate [...] and regrettably we have to leave the question about its validity open.” Edmans et
al. (2009) is an example of an important recent paper using both binary effort and linear contracts. See the
surveys Bolton and Dewatripont (2005); Salanié (2005); Georgiadis (2022) for further references.

2Important generalizations include Sinclair-Desgagné (1994); Conlon (2009); Jung and Kim (2015); Chade
and Swinkels (2020), and Jung et al. (2024). Chaigneau et al. (2022, 2024) develop sufficient conditions with
limited liability.

3Conlon (2009) explains the intuition clearly: “Unfortunately, the Jewitt conditions are tied to the con-
cavity, not only of the technology, but also of the payment schedule. Thus, there are interesting cases where
the Jewitt conditions should fail, since the payment schedule is often not concave. For example, managers
often receive stock options, face liquidity constraints, [...] I believe that it is natural to expect the first-order
approach itself to fail in such cases, since the agent’s overall objective function will tend to be nonconcave
[...]. The fact that CDFC and CISP imply concavity of the agent’s payoff, regardless of the curvature of

2



Our main result, Theorem 1, shows that the first-order approach is broadly valid, as
long as the agent’s reservation utility is sufficiently high. The result holds even when con-
tracts are option-like and the agent’s problem has multiple local maxima. We consider a
setting with limited liability, because of its practical importance and because it is known
that limited liability or a similar assumption is needed to guarantee existence (Moroni and
Swinkels, 2014). We find that, for low reservation utility, the standard view in the litera-
ture holds and the first-order approach often fails. However, for high reservation utility,
we show that the first-order approach is satisfied. Thus, the issues with the validity of the
first-order approach are likely to be important in examples with low reservation utility
like when a monopsonist principal can impose highly unfavorable contracts on agents.
When reservation utility is low, the first order approach is often invalid because it pro-
duces contracts where the agent has a global deviation to exert minimal effort. However,
the first order approach is likely to be valid in settings with high reservation utility, such
as competitive labor markets with high productivity workers. As reservation utility goes
up, the first order approach’s contract increases the incentive to work, eliminating global
deviations, and restoring the first-order approaches validity.

Theorem 1 also shows that the optimal contract exists, is unique, and characterized
by a simple formula. Section 6 show that optimal contracts are piecewise linear option
contracts for many standard distributions and log agent utility, and gives simple compu-
tational agorithms. Thus, the limited liability model seems well suited for applied theory
and empirical models that seek to predict the shape of optimal contracts w(y).

Before going into the analysis, section 2 explains the gist of our results through simple
examples, and reconciles our findings with the literature. Section 3 gives definitions and
Section 4 states Theorem 1. Section 5 outlines the proof. Section 6 considers applications,
extensions, and counter examples.

2 Examples and Literature Review

2.1 Examples Illustrating the Main Result

Consider the following Gaussian-log utility example. A risk-neutral principal hires an
agent to work. The agent chooses action a at a cost c(a) proportional to a2. Output y,

[the payment], then suggests that the CDFC/CISP conditions are very restrictive, not that the first-order
approach is widely applicable.”.
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which accrues to the principal, is normally distributed with mean a and standard devia-
tion σ. The agent has some independent assets and log utility, so that her utility from a
payment of x ≥ 0 is u(x) = log(w0 + x). For concreteness, suppose the principal is the
owner of a small company and the agent is a professional manager. Illustrative values
are a choices in the ballpark of $100,000, standard deviation σ of $20,000, and w0 equal to
$50,000. The agent has reservation utility Ū.

The principal designs a compensation contract with wage w(y) to maximize profits.
The optimal contract balances the goals of inducing effort, reducing the agent’s risk, and
providing the agent with her reservation utility. It is known that, without limited liability,
an optimal contract does not exist. Mirrlees (1999) showed that it is possible for the prin-
cipal to get arbitrarily close to her perfect-information payoff using contracts that impose
harsh punishments with small probability. Thus, we consider the case of limited liability,
requiring w(y) ≥ 0.4

Figure 1 plots optimal contracts for a range of reservation utilities Ū, with certain
equivalents from $0 to $40,000. The left panels plot the optimal wage schedules w(y).
The optimal contracts are intuitive. They have a flat region to the left where, due to
limited liability, the agent is paid w(y) = 0. And an increasing region to the right, which
gives the agents incentives to work. As reservation utility increases, contracts become
more generous. Wages schedules shift up, and the minimum output required to receive
positive pay moves to the left.

The right panel is crucial for understanding when the first-order approach is valid. It
plots the agent’s expected utility U(v∗, a) as a function of a, given the optimal contract.
The first-order approach fails whenever there is a binding non-local deviation. In these
cases, solving the problem with only the local incentive constraint leads to incorrect solu-
tions, as pointed out by Mirrlees (1999). Cases in which the first-order approach fails are
denoted with dashed lines.

The first-order approach fails spectacularly at the lowest reservation utility, with cer-
tain equivalent of $0. The optimal contract is a tough bargain. The agent is expected to
exert effort a equal to $177.2K. The contract w(y) specifies a payment of zero for any out-
put lower than $113.1K. Thus, the agent needs to produce relatively high output to get
paid at all. This contract induces two local maxima in the function U(v∗, a). The agent is
indifferent between basically giving up with a local maximum at a ≈ 0 and a local maxi-

4Moroni and Swinkels (2014) show that, without limited liability, existence often fails if the agent has
negative infinite utility from a finite wage. Limited liability is a common and minimal way to avoid these
types of existence issues.

4



Figure 1: Optimal Contracts with Gaussian Distribution and log Utility
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(b) Expected Utility

Note: Panel a displays the wage function that solves the principal’s profit maximization problem at different
values of Ū, and Panel b displays the agent’s expected utility from a grid of possible actions given the
corresponding wage functions from Panel a. The red line in Panel b plots the optimal action against opitmal
utility for the agent. The values of Ū are expressed in terms of certainty equivalents. The agent’s utility is
u(x) = log( x

20K ), the cost function is c(a) = θa2, where θ = .01, and the agent’s starting wealth is w0 = 50K.
The output is y ∼ N(a, (20K2)), where a is the agent’s action. Dotted lines indicate that the FOA is invalid.
Our optimization routine has only one global IC constraint at a = 1e − 3. We conservatively say that the
FOA is invalid if the Lagrange multiplier on the global IC constraint is greater than 1e − 5 or if deviating to
an action between 0 and .1 reduces the agent’s utility by less than 1e − 2.
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mum at the recommended effort level a = $177.2K. This is consistent with the standard
view in the literature. Option-like contracts are natural, and thus it is difficult to find
general sufficient conditions under which the first-order approach holds.

Surprisingly, the first-order approach becomes valid as soon as reservation utility is
slightly higher. The constraint of giving the agent higher utility forces the principal to
offer contracts with a higher value of U(v∗, a) at the recommended action. This con-
straint moves the rightmost local maximum of U(v∗, a) up. The rightmost maximum
goes up faster than the leftmost local maximum. Thus, the rightmost maximum becomes
the unique global maximum. Numerically, the first-order approach is valid for any reser-
vation utility with certain equivalent above $600, as seen in the figure.

Theorem 1 shows that this example is more general. The theorem shows that, under
certain conditions, the first-order approach is always valid for sufficiently high reserva-
tion utility. The most substantial condition is that greater output is evidence of greater
effort (monotone likelihood ratio). Figures 2 and 3 illustrate the generality of this point
by plotting the same graphs in examples with different risk preferences and output distri-
butions. All the examples display the same qualitative pattern, consistent with Theorem
1. We stress, however, that the monotone likelihood ratio assumption is crucial. For
example, if output has a fat-tailed Student-t distribution, there are examples where the
first-order approach fails for reservation utilities. The reason is that, positive and nega-
tive outliers are not very informative about effort, which generates global deviations.

Theorem 1 also guarantees existence and uniqueness of an optimal contract. More-
over, the solution has a simple calculus-based formula, as in the classic first-order ap-
proach literature following Holmström (1978). The Theorem shows that the optimal wage
equals5

w(y) = k ◦ g (λ + µS(y|a0)) . (1)

The function k ◦ g is determined by the utility function and limited liability constraint.
S(y|a0) is the score function (also known as the likelihood ratio), determined by the dis-
tribution of output. a0 is the optimal action, and λ and µ are Lagrange multipliers.

Theorem 1 makes our limited liability setting particularly amenable to applications.
As long as one considers a competitive setting with sufficiently high reservation utility,

5These additional results are simple given the validity of the first-order approach. Our analysis and
results are close to those in Jewitt et al. (2008), albeit we cannot simply use their results due to slightly
different assumptions. For example, they assume the Rogerson (1985) conditions, which rule out examples
such as the Gaussian distribution of output. Hence, we cannot simply use their results, although our proofs
follow broadly similar lines.
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Figure 2: Optimal Contracts under Different Distributions and Preferences
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different values of Ū for a grid of specifications. The log utility function is u(x) = log( x
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α · − exp(−α x
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α = 2
5 . The normal distribution is y ∼ N(a, (20K2)). The exponential distribution’s rate parameter is 1

a . The
gamma distribution has shape parameter n = 2, and scale parameter a. Formulas for all utility functions
and output distributions are in the online appendix. The cost function is always c(a) = θa2, but θ = .01
in the log utility examples, θ = .004 in the CRRA examples and θ = .008 in the CARA examples. Our
optimization routine has only one global IC constraint at a = 1e − 3. We conservatively say that the FOA
is invalid if the Lagrange multiplier on the global IC constraint is greater than 1e − 5 or if deviating to an
action between 0 and .1 reduces the agent’s utility by less than 1e − 2.
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Figure 3: Agent Utility versus Action under Different Distributions and Preferences
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the main difficulties are resolved. Optimal contracts exist, are unique, and can be calcu-
lated trivially from equation (1).

Section 6 provides results to help researchers use the limited liability model. We pro-
vide simple calculus formulae for k ◦ g and S covering a wide set of examples. These can
be readily applied in both theoretical and numerical models. We provide accompanying
code for numerical solutions.

An immediate corollary of equation (1) is that piecewise linear contracts are optimal
in a number of examples. Piecewise linear contracts are options, with a constant value
up to a point, and increasing thereafter. The reason is the following. The function k ◦ g is
piecewise linear when utility is log. And the score function is linear for many common
statistical distributions of output, including Gaussian, exponential, Poisson, and Gamma.
More broadly, in any distribution in an exponential family with linear sufficient statistic.
This can be seen in figures (1) and (2). Optimal contracts are slightly nonlinear for very
low reservation utilities, but piecewise linear as soon as the first-order approach starts
holding. This extends previous results that rationalize option-like contracts (Innes, 1990;
Jewitt et al., 2008; Chaigneau et al., 2024). This also contributes to the literature rational-
izing simple contracts (Holmstrom and Milgrom, 1987; Carroll, 2015).

2.2 Relationship to the Literature

At first glance, our results appear to contradict the standard view in the literature that the
first order approach requires stringent conditions. In fact, the two are perfectly consistent.
Consider the Gaussian example in figure (1). When the reservation utility is low, the
optimal contract produces two distinct local maxima of the agent’s utility, violating the
first-order approach because the agent then has a profitable non-local deviation. This is
exactly the kind of global incentive problem highlighted by Mirrlees (1999). Likewise,
the first-order approach fails in all the examples in figure (2). Hence, if one insists that
the first-order approach must hold for every reservation utility, many interesting examples
must be ruled out, matching the standard view in the literature.

Our contribution is to show that if the reservation utility is sufficiently high, those very
same examples do satisfy the first-order approach. The core idea is that requiring the
principal to give the agent greater overall utility elevates the payoff at the principal’s
intended action, pushing the local maximum at the intended action above other local
maxima.

Historically, there are three generations of contributions to the first-order approach.
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The first generation was started by Mirrlees (1999) in the mid 1970s, who showed that
the first-order approach does not hold generally. Prior to Mirrlees (1999), the first-order
approach was simply assumed with little justification. Subsequent papers then became
aware that they had to assume validity of the first-order approach (Holmström, 1978),
and developed results that do not depend on the first-order approach (Grossman and
Hart, 1983).

The seminal papers in the second generation are Rogerson (1985) and Jewitt (1988).
They provided sufficient conditions for the first-order approach. Rogerson’s conditions
are well known to be strict, ruling out many natural distributions, including the Gaussian
and all examples in figure (2). Jewitt’s conditions are more general, and include many
interesting cases. Jewitt’s main assumption is implicit, in that he requires his conditions to
hold for all output levels, in particular ruling out limited liability (Chaigneau et al., 2022).
Restrictions similar to limited liability are known to be important to guarantee existence
(Moroni and Swinkels, 2014; Jewitt et al., 2008). In many examples that satisfy the Jewitt
conditions, an optimal contract does not exist. This includes the Gaussian - log utility
example without limited liability. The second-generation papers have been influential,
and much of the theoretical and applied work to this day assumes these conditions.

Our own results are close to Jewitt (1988). We impose similar conditions on the part of
the contract where limited liability does not bind, while allowing for limited liability. In
contrast, Jewitt (1988) requires the conditions to hold globally, ruling out limited liability,
and sometimes creating existence issues (Jewitt et al., 2008; Moroni and Swinkels, 2014).
The proof of Theorem 1 shows that, with high reservation utility, the limited liability
constraint binds with low probability. We then show, in similar lines to Jewitt (1988), that
the agent’s problem becomes concave.

What makes our result applicable is that, in many examples, the first-order approach
starts holding for relatively modest reservation utility, and even in cases with multiple
local maxima. This can be seen in figures (1) and (3). The intuition is that our theorem
shows that, if reservation utility is very high, the U(v∗, a) is concave in a. As reservation
utility increases, the functions U(v∗, a) have to unwind into a function with a single peak.
And the recommended action becomes often much earlier than the function becomes con-
cave. In this sense, our result has a limitation similar to other asymptotic results, such as
the central limit theorem, that only holds for large enough sample sizes.

Finally, there is a third generation of work extending Jewitt’s single-peakedness ap-
proach to multidimensional actions and richer information structures (e.g. Conlon, 2009;
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Jung and Kim, 2015; Chade and Swinkels, 2020; Chaigneau et al., 2022; Jung et al., 2024).
We believe our methods can be adapted to such environments, but we do not pursue that
here.

3 Model

3.1 Model

A risk-neutral principal hires an agent with limited liability. The agent has utility u(x)−
c(a) of receiving a payment x ∈ R+ and taking action a in A ⊆ R+. Both u and c
are strictly increasing. Output y ∈ R depends on the agent’s action and is distributed
according to the output density f (y|a).

A contract is a function v : R → u(R+), which specifies the agent’s utility v(y) from
the payment as a function of output y. Contracts are defined in terms of utility to simplify
notation. To define the wage payments, let the compensation cost function k be the
inverse of u. A wage function is a function w : R → R+. The wage function associated
with contract v is w(y) = k(v(y)). Let C be the set of feasible contracts.

The agent’s utility from a contract v given action a is

U(v, a) :=
∫

v(y) f (y|a) dy − c(a).

The expected wage is

W(v, a) :=
∫

k(v(y)) f (y|a) dy.

The cost minimization problem given an intended action a0 ∈ A and reservation
utility Ū is to choose a contract v to minimize the expected wage subject to the individual
rationality (IR) and global incentive compatibility (GIC) constraints. Individual ratio-
nality requires that the agent’s expected utility is at least reservation utility, and global
incentive compatibility requires that choosing a0 is optimal for the agent. The cost mini-
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mization problem is to choose v in C to

minimize W(v)

subject to U(v, a0) ≥ Ū, (IR)

U(v, a0) ≥ U(v, â) ∀â ∈ A. (GIC)

The relaxed cost minimization problem replaces the global incentive compatibility
constraint with the local incentive compatibility constraint (LIC):

minimize W(v)

subject to U(v, a0) ≥ Ū, (IR)

∂aU(v, a0) = 0. (LIC)

3.2 Assumptions and Notation

We state here the assumptions needed for our results. This section can be skimmed on a
first reading.

Assumption 1 (Regularity of utility, cost and density). The set of feasible actions A ⊆ R+

is a compact interval including 0. The utility function u is strictly concave and smooth, and has
limx→∞ u′(x) = 0. The cost function c is strictly convex and smooth, and c′(0) = 0. The output
density f (y|a) is smooth in the action, a, for all outputs, y.

We now make technical assumptions that allow us to use Leibniz’s rule of differenti-
ation under the integral sign. For this, we impose restrictions on k, f and on the set of
feasible contracts. At the same time, we require the set of feasible contracts to be rich
enough so that relevant contracts are not ruled out by assumption.

Assumption 2 (Regularity of feasible contracts). The output density function f (y|a) satisfies:

1. Every feasible contract is measurable.

2. Given any a1 in A and a feasible contract v, there exists an integrable function θ(y) and a
neighborhood of a1 such that, for all a in this neighborhood,

|v∂n
a f (y|a)| ≤ θ(y)

for n = 0, 1, 2 and for all y in the support of f (·|a).
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3. For all a in A and canonical contract v (as defined in definition 2),

Π(v, a) < ∞.

4. The set of feasible contracts is convex and includes all canonical contracts.

We now consider substantive restrictions.

Assumption 3 (Assumptions on the distribution of output). The output density function
f (y|a) satisfies:

1. For all a, the support of f (y|a) is R.

2. Fa(y|a) < 0 for all y and a.

3. For all a, the score ∂a log f (y|a) is strictly increasing in y and its image is R (this is known
in the literature as the monotone likelihood ratio property or MLRP).

4. There exists y0 in R such that, for all y ≤ y0 and a,

faa(y|a) > 0.

Note that we assume that the support of f is R. The numerical examples, like the ex-
ponential distribution, suggest that this assumptions is not necessary. We hope to weaken
the assumption in the next version of this paper.

Assumption 4 (Concavity and limit of inverse marginal utility). The function k′−1 is strictly
concave and

lim
z→∞

z
d
dz

k′−1
(z)

is finite.

The function k′−1 is the same as Jewitt’s (1988) ω(z). So our assumption that k′−1 is
strictly concave corresponds to his assumption (2.12).

For some results, we restrict attention to intended actions where it is possible to satisfy
the local incentive compatibility constraint.

Definition 1. An intended action a is regular if it is in the interior of A and there exist a feasible
contract v such that

∂aU(v, a) ≥ 0.
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4 Main Result

We can now state our main result.

Theorem 1. [Validity of the First Order Approach with High Reservation Utility] Given a regular
intended action a0 > 0, there exist reservation utilities U∗ in R and ŪR ∈ (U∗, ∞] such that:

1. For Ū ≥ ŪR, neither the relaxed cost miminization problem nor the cost minimization
problem are feasible.

2. For Ū ≤ ŪR, the relaxed cost minimization problem has an almost everywhere unique
solution given by proposition 1.

3. For U∗ ≤ Ū < ŪR, this is also the almost everywhere unique solution of the cost minimiza-
tion problem.

5 Proof of the Main Result

The proof of the main result follows from two key propositions. Proposition 1 character-
izes the solution of the relaxed problem. Proposition 2 shows that, for sufficiently high
reservation utility, the agent’s problem is concave. We now state these propositions and
explain the key steps in the argument. Appendix A contains the proofs.

For the relaxed problem to be well-defined, the derivative ∂aU(v, a) must be well de-
fined. Remark A.1 in the appendix shows that this is true under our assumptions, and
moreover that we can calculate the derivative by differentiating under the integral sign.
Henceforth, we will use differentiation under the integral sign without referencing re-
mark A.1.

Throughout this section, fix a regular intended action a0. To simplify notation, we omit
the dependence on a0 whenever it is clear, writing for example U(v) instead of U(v, a0).

5.1 Solution to the Relaxed Problem

We first show that the relaxed cost minimization problem has an almost everywhere
unique solution, and that this solution has a simple formula in terms of Lagrange mul-
tipliers. The form of the solution is based on the first order condition, and is similar to
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standard formulas in the literature, such as in the case without limited liability.6

The relaxed cost minimization problem is convex. Define its Lagrangian as

L(v, λ, µ) := W(v) + λ (Ū − U(v)) + µ(−Ua(v)). (2)

Heuristically differentiating this Lagrangian with respect to v(y) and setting the deriva-
tive to zero gives

k′(v(y)) f (y|a) = λ f (y|a) + µ fa(y|a0).

Dividing by f (y|a) gives

k′(v(y)) = λ + µ
fa(y|a0)

f (y|a0)
. (FOC)

Equation (FOC) is the key step in the standard first-order approach literature. Ap-
pendix A formally analyzes the convex program, demonstrates existence and uniqueness
of the solution, and characterizes the optimal contract based on equation (FOC).

In our case of limited liability, the solution is described more clearly with the following
notation. Define the optimal expected wage ω(Ū) as the value of the infimum in the
relaxed cost minimization problem. Define the link function g : R → R as7

g(z) := k′−1
(

max
{

1
u′(0)

, z
})

.

Define the score function8 as in the statistics literature:

S(y|a) :=
∂

∂a
log f (y|a) = fa(y|a)

f (y|a) .

6This type of formula for the optimal contract is well-known and central in the literature that assumes the
first-order approach. The seminal reference is Holmström (1978), and recent examples with limited liability
include Jewitt et al. (2008) and Chaigneau et al. (2022). The survey Georgiadis (2022) has an excellent
explanation of the formula in its first paragraphs.

7The link function’s input, z, is a marginal dollar cost of providing one util to the agent (measured in
units of $ of output

utility ). The link function evaluated at z, g(z), returns the utility level where z is the marginal cost

of utility to the agent. Any z below 1
u′(0) , which is the cheapest possible marginal cost, returns g(z) = u(0).

8The score is known as the likelihood ratio in the economics literature. We favor the term score to be in
line with the modern literature outside of economics.

15



Definition 2. A canonical contract V(y|λ, µ) is defined for λ and µ in R as

V (y|λ, µ) := g (λ + µS(y|a0)) . (3)

The following proposition shows that the relaxed problem typically has a solution and
characterizes the solution and Pareto frontier.

Proposition 1. [Solution of the Relaxed Cost-Minimization Problem] There exists ŪL in R and
ŪR in R ∪ {∞} such that:

1. For Ū ≥ ŪR, the relaxed problem is not feasible.

2. For Ū < ŪR, the relaxed problem has an almost everywhere unique solution v∗(y|Ū).
There exist Lagrange multipliers λ∗(Ū) ≥ 0 and µ∗(Ū) > 0 such that the solution is
almost everywhere equal to the canonical contract

v∗(y|Ū) = V (y|λ∗(Ū), µ∗(Ū)) .

3. For Ū ≤ ŪL, we have λ∗(Ū) = 0. The relaxed optimal contract v∗(·, Ū) and optimal
expected wage ω(Ū) do not vary with Ū in this range.

4. For ŪL < Ū < ŪR, λ∗(Ū) is strictly increasing and limŪ→∞ λ∗(Ū) = ∞. The optimal
expected wage ω(Ū) is strictly increasing and strictly convex.

The Gaussian-log utility example illustrates proposition 1. The score is (y− a)/σ2 , the
compensation cost function is k(v) = exp(v)−w0 , and the link function is log max{z, w0}.
This implies the wage function

k(v∗(y|Ū)) =

[
λ∗(Ū) + µ∗(Ū)

y − a
σ2 − w0

]+
.

This is the piecewise linear solution that we saw numerically in figure 1a. The convex
Pareto frontier is illustrated in figure 4. In the log utility case, ŪR = ∞, as the principal
can give arbitrarily high utility to the agent.

The formula in proposition 3 is essentially the standard first-order approach’s equa-
tion (FOC), but properly accounting for limited liability. The intuition is the following.
The principal would like to always pay the agent g(λ∗(Ū)), which is the utility level
where the marginal cost of providing utility to the agent is λ∗(Ū). However, incentive
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Figure 4: Pareto Frontier with Gaussian Distribution and Log Utility
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Note: This figure displays the relaxed problem’s Pareto frontier. The agent’s utility is u(x) = log( x
20K ), the

cost function is c(a) = θa2, where θ = .01, and the agent’s starting wealth is w0 = 50K. The output is
y ∼ N(a, (20K2)), where a is the agent’s action. The intended action is a0 = 100K.
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compatibility requires that payment depends on whether there is statistical evidence of
high effort. The contract, therefore, pays more if the score is positive and less if the score
is negative.

Proposition 1 deviates substantially from the literature without limited liability. Our
formula for the optimal contract is different because it gives the agent a constant pay-
ment of 0 for sufficiently low outcomes, where the limited liability constraint binds (see
the kink in the wage function in Figure (5a). Proposition 1 guarantees existence of an
optimum in the relaxed problem, which is impossible in a model without limited liabil-
ity, where the relaxed problem often has no solution. This stark difference can be seen
in the Gaussian-log utility example. Without limited liability, any contract satisfying the
first-order conditions would pay a globally linear wage. But this would imply negative
consumption in some states, and thus −∞ utility to the agent. Indeed, the Gaussian-log
utility example illustrates Mirrlees (1999)’s classic point that optimal contracts may not
exist without limited liability.

5.2 The Case of High Reservation Utility

We now demonstrate that, for sufficiently high reservation utility, the solution to the re-
laxed cost minimization problem also solves the original cost minimization problem. To
do so, we show that the relaxed problem’s solution satisfies the global incentive compat-
ibility constraint. This is achieved by demonstrating the stronger result that the agent’s
utility U(v∗, a) is concave in a at the relaxed optimal contract.

Proposition 2. [Concavity of the Agent’s Problem for High Reservation Utility]

There exists U∗ < ŪR ∈ R such that for all Ū > U∗, and all a ∈ A,

Uaa(v∗(y|Ū), a) ≤ 0.

The proposition shows that high reservation utility is crucial for the first order ap-
proach’s validity, and the first order approach may not be valid at low reservation util-
ity. Figure (5) helps illustrate this result by plotting the relaxed optimal contract, and
the agent’s expected utility versus her effort under the relaxed-optimal contract in the
Gaussian-log utility example. The blue line represents the expected utility function for
the relaxed-optimal contract with the lowest reservation utility, Ū = u(0). When reserva-
tion utility is low, the agent’s problem is not concave, and choosing an action very close to
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0 is a profitable global deviation for the agent. The limited liability constraint makes low
effort appealing for the agent; it ensures that the agent can always achieve utility strictly
greater than u(0) by exerting no effort. If the IR constraint binds, as it does in many of
our examples, then the agent’s expected utility from choosing the intended action is Ū,
and the first order approach surely fails when Ū = u(0).

Figure 5: Relaxed Optimal Contracts with Gaussian Distribution and log Utility
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(b) Expected Utility

Note: Panel a displays the wage function that solves the relaxed problem at different values of Ū, and
Panel b displays the agent’s expected utility from a grid of possible actions given the corresponding wage
functions from Panel a. The values of Ū are expressed in terms of certainty equivalents. The agent’s utility is
u(x) = log( x

20K ), the cost function is c(a) = θa2, where θ = .01, and the agent’s starting wealth is w0 = 50K.
The output is y ∼ N(a, (20K2)), where a is the agent’s action. The intended action is a0 = 100K.

Figure (5) also illustrates how, as reservation utility increases, the first-order approach
becomes valid. The IR constraint ensures that U(v∗, a0) must be greater than Ū. The
rightmost local maximum, U(v∗, a0), therefore, increases as Ū increases. The leftmost lo-
cal maximum also rises, but much more slowly. In the example, the first-order approach
becomes valid with a very small increase in Ū above u(0), as the rightmost local maxi-
mum overtakes the leftmost local maximum. Concavity of U(v∗, a) on the other hand,
usually requires much larger increases to Ū, so, there are many values of Ū where the
first-order approach is valid, even though U(v∗, a) is not concave in a. Thus, concavity of
U(v, a) is a sufficient, but not necessary condition for the first-order approach’s validity.

We now explain why the agent’s problem is concave for high reservation utility, but
not for low reservation utility. The relaxed optimal contract has two distinct regions.
When the outcome, y, is below a threshold, the limited liability constraint binds, and
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the contract specifies a constant wage of 0. When y is above the threshold, the agent’s
payment is dictated by equation FOC. Figure 5 illustrates how the threshold depends on
the agent’s reservation utility. As reservation utility increases, the threshold shifts to the
left.

The region where the limited liability constraint binds introduces convexity to the
agent’s problem. When the limited liability constraint binds, the agent is paid 0, and
marginal increases to the agent’s effort do not change her payment. The agent’s returns
to effort are therefore proportional to the probability the agent receives a positive pay-
ment. This probability is increasing on her effort, so the agent’s expected wage is a convex
function of the agent’s effort.

Consider the Gaussian-log utility example. As we have seen, the wage function is

w(y) =
(

λ + µ
y − a0

σ2 − w0

)+

.

The outcome y can be decomposed into a normally distributed shock x plus the action a.
Substituting into the wage function yields

w(y) =
(

λ + µ
x + a − a0

σ2 − w0

)+

.

The derivative of the expected wage with respect to the action is

∂E[w(y)]
∂a

=
µ

σ2 · P
(

λ + µ
x + a − a0

σ2 − w0 > 0
)

.

The agent is only exposed to the outcome when x is sufficiently large. If x is too small for
the agent to get paid, the agent receives no benefit from marginally increasing effort; she
is paid 0 regardless. The agent experiences marginally increasing returns to effort because
the probability that the agent’s effort affects her payment increases on a.

As reservation utility increases, the threshold for positive payment shifts to the left, so
the agent’s probability of payment increases. Figure 6a illustrates that when reservation
utility is high, the probability of payment is close to 1 even for low effort levels. Lemma
A.7 formalizes the result that the probability of payment converges to 1 as reservation
utility converges to ŪR. When reservation utility and the probability of payment are low,
the probability of payment increases rapidly on effort, and the agent’s expected wage
function is highly convex (see Figure 6b). At high reservation utility, payment is likely
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regardless of the effort level, so the agent’s expected wage is nearly linear. The agent’s
utility function is concave, and the cost function is convex, so the agent’s problem is glob-
ally concave as long as the limited liability constraint does not distort the wage function
too much.

Figure 6: Probability of Payment and Expected Wages in Gaussian-Log Utility Example
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Note: Panel A plots the probability that the agent receives a strictly positive wage against the agent’s action,
under the relaxed optimal contract for different values of reservation utility. Panel B plots the expected
wage against effort for the same contracts. The parameters of the problem are as in Figure 5.

The proof of lemma A.7 illustrates why the probability of payment converges to 1 as
reservation utility gets large. When reservation utility is large, the agent receives a large
payment in nearly all states of the world where she is paid. If she were likely to be paid
zero, there would be an incentive to work harder than the intended effort level to ensure
that she receives the large payment. Therefore, for the first order condition to hold, the
probability that the agent receives no payment must converge to 0.

Once this is established, proposition 2 follows naturally. Under our assumptions, the
optimal contract v(y) is concave in the region where w(y) > 0. Thus, since the option-
like region of the contract is far to the left, U(v∗, a) is concave in a. Our result is closely
related to Jewitt (1988)’s classic result. He shows that the agent’s problem is concave in
a similar setting, but without limited liability. In his setting, optimal contracts always
have the concave shape that our contracts exhibit in the region w(y) > 0. Thus, Jewitt
(1988) shows that the agent’s problem is concave, and this holds for any reservation utility.
Unfortunately, without limited liability there are often no optimal contracts, as we already
demonstrated in the Gaussian-log utility example.
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5.3 Proof of Theorem 1

Theorem 1 follows trivially from propositions 1 and 2.

Proof of Theorem 1. Parts (1) and (2) of Theorem 1 are included in Proposition 1. Part (3)
follows from Proposition 2. For any Ū ≥ U∗ we have that v∗(Ū) is concave, and thus is
a solution to the cost minimization problem. Any other solution also solves the relaxed
cost minimization problem, so equals v∗(Ū) almost everywhere.

6 Applications and Extensions

6.1 Closed Form Solutions

Theorem 1 implies that optimal contracts have simple functional forms in parametric set-
tings. Here we describe the solutions for common parametrization and note their proper-
ties.

Optimal contracts depend on effort cost, risk preferences (which determine the link
function g), and on the distribution of output (which determines the score S). Tables
1 and 2 provide basic formulae for the link and score functions that make up optimal
contracts g(µ + λS(y|a0)).

Table 1: Utility Functions, Link Functions, and Wage Functions

Utility Function Link Function Wage Function

u(x) g(z) w(z)

Log log(x + w0) log(max(w0, z)) (z − w0)
+

CRRA (x+w0)
1−γ

1−γ
max(wγ

0 ,z)
1−γ

γ

1−γ

(
(z+)

1
γ − w0

)+

CARA − exp(−α(x+w0))
α − 1

α max(exp(αw0),z)
(log+ z−αw0)

+

α

Note: The utility function is the agent’s utility from consumption given starting wealth w0 and a transfer, x.
The link and wage functions are in terms of z, which is a function of the outcome, y: z(y) = λ + µS(y|a0).

Linearity Linear contracts play a prominent role in contract theory. It has long been
noted that linear contracts are common, but that they only arise under relatively special
assumptions (Holmstrom and Milgrom, 1987; Carroll, 2015).
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Table 2: Error Distributions

Distribution Probability Density Score Function S(y|a) Mean

Gaussian N (a, σ2) y−a
σ2 a

Log Normal 1
y
√

2πσ2 exp
(
− (log(y)−a)2

2σ2

)
log(y)−a

σ2 exp
(

a + σ2

2

)
Poisson aye−a

y!
y−a

a a

Exponential 1
a e−

y
a y−a

a2 a

Bernoulli ay(1 − a)1−y, y ∈ {0, 1} y−a
a−a2 a

Geometric
(

1 − 1
a

)y−1(
1
a

)
, y ∈ {1, 2, . . . } y−a

a2−a a

Binomial (n
y)ay(1 − a)n−y, y ∈ {0, . . . , n} y−na

a−a2 na

Gamma f (y | n, a) = yn−1e−
y
a

Γ(n) an
y−na

a2 na

Student’s t
Γ
(

ν+1
2

)
Γ
(

ν
2

)√
πν σ

(
1 + 1

ν
(y−a)2

σ2

)− ν+1
2 (ν+1)(y−a)

ν σ2+(y−a)2 a

Exponential Family h(y) exp
(

η(a) T(y)− A(a)
)

T(y) dη(a)
da − dA(a)

da (Not specified)

y = a + X, X ∼ h g(y − a) − g′(y−a)
h(y−a) a + E[X]

y = aX, X ∼ h
∣∣ 1

a

∣∣ h
(

y
a

)
− 1

a −
y
a2

g′( y
a )

g( y
a )

a E[X]

Note: This table presents probability the PDF, score function, and means of probability distributions as
functions of the agent’s chosen action, a.

Our model yields piecewise linear contracts in a number of examples, as seen in the
tables and in the Gaussian-log utility example. The key ingredients are log utility, which
makes the wage function linear in the score, and a linear score function. This includes
many distributions, because the score is linear for distributions in an exponential family
with linear sufficient statistics. That is, when f (y, a) is of the form

f (y|a) = exp (η(a)y + A(a)) . (4)

We note this as follows:

Remark 1 (Linear Contracts). Assume that utility is log (u(x) = log(w0 + x)), and that the
distribution of outcomes is in an exponential family with linear sufficient statistic (as in equa-
tion 4). Then the relaxed optimal contract wage function is piecewise linear. This includes the
Gaussian, exponential, Poisson, and gamma distributions.9

9Note that the remark covers distributions with support different than R, such as the exponential. These
distributions do not satisfy Assumption (3). Nevertheless, the proof of proposition 1 does not use that the
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Concave and Convex Contracts The optimal contract is always at least partially con-
vex because the limited liability constraint requires that w(y) = 0 for all y less than some
threshold, y

¯
. The region where the limited liability constraint does not bind, however, can

be convex or concave depending on the agent’s risk aversion.

Remark 2. Suppose the score function is linear, and let µS(y|a0) = ky. Then, if the agent has
CRRA utility, the region of the optimal contract where the limited liability constraint does not
bind is convex if the risk aversion parameter γ > 1 and concave if γ < 1:10

w(y) = (λ + ky)
1
γ for y > y

¯
.

If the agent has CARA utility, the same region of the optimal contract is logarithmic:

w(y) =
log(λ + ky)

α
− w0 for y > y

¯
.

The remark shows that the shape of the optimal contract depends heavily on the
agent’s utility function, and a wide variety of contracts are potentially compatible with
the theory. Our result is contrary to Conlon (2009)’s view that convex contracts, like CEO
compensation with stock options, are incompatible with the first-order approach. In fact,
the optimal contract with CRRA utility and γ < 1 closely approximates a CEO compen-
sation package of stock options with many strike prices. To see this, consider a CEO who
receives ni options with strike price si that expire at the end of the year. The CEO’s wage
is

w(y) = ∑
i

ni(y − strikei)
+,

where y is the stock’s end of year price price. The wage function’s slope at y is ∑strikei<y ni;
the wage is a piecewise-linear function where the slope increases as y increases. The
options package wage may be a discretization of the contract the model predicts for an
agent with CRRA utility with γ < 1, and a linear score function. Its slope is also increasing

on the outcome and equals k
γ (λ + ky)

1−γ
γ for some constant k.

Remark 2 affirms Holmstrom and Milgrom’s (1987) view that the principle agent

support is R, so the remark holds. However, our proof that the relaxed optimal contract is optimal does
use that the support is R. Therefore, we do not know whether Theorem 1 can be extended to different
supports, and thus whether the remark can be extended to optimal contracts in the case of sufficiently high
reservation utility. We conjecture based on numerical results that this is true and hope to include these facts
in our next revision.

10Assumption 4 requires that γ > 1
2 .
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model does not robustly predict linear wages. The optimal wage is only linear if the
agent’s risk aversion parameter is precisely γ = 1. However, if the agent’s risk aversion
is approximately one, the optimal contract will be approximately linear, and using a linear
contract may be practical.

Limitations and numerical methods. The formulae have two main limitations. First,
there is no general closed form solution for the Lagrange multipliers λ and µ. Thus,
Theorem 1 guarantees that optimal contracts have the described functional form, but the
Lagrange multipliers have to be calculated numerically. Second, as noted in Theorem 1,
these simple formulae do not hold for sufficiently low reservation utility.

To address these limitations, we provide accompanying code to numerically solve for
optimal contracts. The numerical methods solve both the relaxed problem, and also the
full cost minimization problem, in the case where only a finite number of global con-
straints bind. This is the case in all the experiments that we conducted. Both are convex
optimization problems, and can be solved at trivial computational cost in all our experi-
ments. The code implements all the common specifications in tables 1 and 2.

7 Conclusion

This paper shows that when an agent’s reservation utility is sufficiently high, the long-
standing concerns about the validity of the first-order approach largely disappear. De-
spite the possibility of multiple local maxima under low reservation utility, forcing the
principal to provide higher overall utility eliminates global deviations, ensuring both ex-
istence of an optimal contract and applicability of the standard calculus-based approach.
Our results hold under natural assumptions and extend to many commonly used distri-
butions and preferences. This suggests that the first-order approach is especially relevant
in competitive labor markets or other environments where agents have strong outside
options.

In particular, our results show that the many existing results in the literature that have
been proven assuming the first-order approach hold in this broader array of settings,
include many settings with option-like contracts, and even contracts with wages that are
convex functions of output. We hope that this result and the basic calculus formulae we
provide will be useful in applied and theoretical work.
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Appendix

A Proofs

A.1 Solution of the Relaxed Problem

Throughout this subsection, fix a reservation utility Ū and regular intended action a0. The
relaxed problem only has a solution if U(v, a) can be differentiated under the integral sign,
so we begin by showing that differentiation under the integral at any action is possible
for any feasible contract.

Remark A.1. Let v be a feasible contract. Then, for all a in R+, Ua(v, a) exists, is finite, and

Ua(v, a) =
∫

v(y) fa(y|a) dy.

Proof. The conditions for Leibniz’s rule to hold are in Assumption 2.2.

We now derive some intermediate results to establish proposition 1. Recall the defini-
tion of the Lagrangian from equation (2) and definition 2 of a canonical contract.

Note that canonical contracts uniquely minimize the Lagrangian:

Lemma A.1. Given λ and µ in R, there exists v that minimizes the Lagrangian L(v, λ, µ) among
all feasible contracts. v is f (·|a0) almost everywhere equal to the canonical contract V(y, λ, µ).

Proof. The Lagrangian in equation (2) can be written as

L(v, λ, µ) =
∫
[k(v(y))− λv(y)− µv(y)S(y|a0)] f (y|a0) dy + Ū.

Differentiating the integrand with respect to v(y) yields

[k′(v(y))− λ − µS(y|a0)] f (y|a0)

and this is strictly convex in v(y). Therefore, the integrand is minimized pointwise in
v(y) at v(y) = V(y|λ, µ). Hence, the infimum is attained, and any minimizer satisfies the
desired formula f (y|a0) almost everywhere.

It only remains to show that V(y|λ, µ) is feasible. This follows from assumption 2 Part
4.
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We now note that, given λ there is a unique value of µ that solves the local IC con-
straint.

Lemma A.2. Given λ in R, there exists a unique µ̃(λ) such that the canonical contract V(y|λ, µ̃(λ))

satisfies the local IC constraint (LIC). Moreover, µ̃(λ) > 0.

Proof. We have

Ua(v) =
∫

v(y) fa(y|a0) dy.

If µ = 0, then v(y) is constant, so

Ua(V(·|λ, 0, a0))− c′(a0) < 0.

As µ → ∞, V(y|λ, µ, a0) converges pointwise to u(∞) if S(y|a0) > 0 and to u(0) if
S(y|a0) < 0). Hence, because a0 is regular, for large enough µ,

Ua(V(·|λ, µ, a0))− c′(a0) > 0.

Therefore, there exists at least one µ1 > 0 such that

Ua(V(·|λ, µ1, a0))− c′(a0) = 0.

It only remains to prove that this solution µ1 is unique. To see this, note that

Ua(V(·|λ, µ1, a0))

is weakly increasing in µ. And, moreover, it is strictly increasing at any solution µ1 be-
cause c′(a0) > 0 implies that there is a positive measure of y such that fa(y|a0) > 0 and

λ + µ1
fa(y|a0)

f (y|a0)
>

1
u′(0)

.

The lemma implies that the family of canonical contracts that satisfy (LIC) is a one-
dimensional family indexed by λ. Define

Ṽ(y|λ) := V(y|λ, µ̃(λ))
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Define the relaxed Pareto problem as finding v in C to

minimize W(v)− λU(v)

subject to ∂aU(v, a0) = 0 (LIC)

The next lemma shows that the contracts Ṽ(y|λ) span the solutions to the Pareto prob-
lem:

Lemma A.3. Given λ in R, the relaxed Pareto problem has a solution, and any solution is f (y|a0)

almost everywhere equal to Ṽ(y|λ).

Proof. For any v satisfying (LIC),

W(v)− λU(v) = L(v, λ, µ̃(λ))− λŪ.

Lemma A.1 then implies that W(v)− λ(v) is minimized over C by Ṽ(y|λ), and that
this solution is almost-everywhere unique. This contract satisfies (LIC) by the definition
of µ̃(λ).

Define the expected wage and utility attained by these contracts as

Ũ(λ) := U(Ṽ(·|λ), a0),
W̃(λ) := W(Ṽ(·|λ), a0).

Lemma A.4. Ũ(λ) is strictly increasing.

Proof. Consider λ1 < λ2 with optima v1 := Ṽ(·|λ1) and v2 := Ṽ(·|λ2). By optimality,

W(v1)− λ1U(v1) ≤ W(v2)− λ1U(v2),

and
W(v2)− λ2U(v2) ≤ W(v1)− λ2U(v1).

Adding the inequalities,

(λ2 − λ1) ·
(
Ũ(λ2)− Ũ(λ1)

)
≥ 0.

Therefore, Ũ is non-decreasing. It only remains to show that Ũ is strictly increasing.
To reach a contradiction, assume that Ũ(λ2) = Ũ(λ1). Optimality implies that W̃(λ1) =
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W̃(λ2). Let λ̄ = (λ1 + λ2)/2. We have Ũ(λ̄) = Ũ(λ1). By our assumptions on the
score, v1 and v2 differ in a set of positive measure. By strict convexity of k, it follows that
W̃(λ̄) < W̃(λ1). This contradicts the optimality of v1.

The proof of proposition 1 follows from collecting these results.

Proof of Proposition 1. Let ŪL := Ũ(0) and ŪR := limλ→∞ Ũ(λ).
Part 1.
ŪR equals u(∞)− c(a0), so the relaxed problem is not feasible for Ū ≥ ŪR, as desired.
Part 2.
Let λ∗(Ū) be 0 if Ū ≤ ŪL and be the inverse of Ũ for ŪL < Ū < ŪR. Lemma A.4

implies that λ∗ is well defined and that λ∗(Ū) ≥ 0.
Let µ∗(λ) := µ̃(λ∗(Ū)). Lemma A.2 implies that µ∗(Ū) > 0. Let v∗(y|Ū) := Ṽ(y|λ∗(Ū)).

Note that this coincides with the definition of v∗ in the proposition statement.
Lemma A.3 implies that v∗(y|Ū) solves the Pareto problem given λ∗(Ū). This implies

that v∗(y|Ū) also solves the relaxed cost minimization problem. Likewise, A.3 implies
that the solution is unique almost everywhere.

Part 3.
This follows from the definition of λ∗(Ū) which equals 0 in this range.
Part 4. λ∗ strictly increasing follows from lemma A.4 and the strict convexity of ω

follows from v∗(·|λ) being different for each value of λ and from k being strictly convex.

A.2 Proof of Proposition 2

This section demonstrates that the second derivative of agent’s utility is negative for
sufficiently high reservation utility. The bulk of the section is spent demonstrating the
same result for λ sufficiently high, and the main result follows as an immediate corol-
lary. Throughout this section, we use the Ṽ(y|λ) notation because we are focused on the
agent’s problem as λ becomes large. Although µ is a function of λ (Lemma A.2) we abuse
notation by omitting µ’s dependence on λ and using µ̃ to denote µ̃(λ).

The section proceeds as follows. Lemmas A.5 and A.6 derive a convenient formula for
the second derivative of agent’s utility with respect to effort. Lemma A.7 shows that the
agent’s probability of receiving payment approaches 1 as λ approaches infinity. Lemma
A.8 shows that the second derivative of agent’s utility is negative for λ sufficiently high.
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We then use these lemmas to prove the main result. Finally, we prove a few minor lemmas
which we used in the proofs of the major lemmas.

We begin with an equation for the general form of agent’s utility and its derivatives
for an arbitrary contract.

Lemma A.5. Given a contract, v, U and its derivatives evaluated at a equal

U(v, a) =
∫

v · f (v|a) dy − c(a),

Ua(v, a) =
∫

v · S(y|a) f (y|a) dy − c′(a),

Uaa(v, a) =
∫

v ·
(

S2(y|a) + Sa(y|a)
)

f (v|a) dy − c′′(a).

Proof. The expression for U(v, a) is just the definition. Differentiating U(v, a) with respect
to a yields

Ua(v, a) =
∫

v fa(v|a) dv − c′(a).

The formula for Ua follows from the fact that fa(v|a) = f (v|a)S(v|a). Differentiating
Ua(v, a) with respect to a gives

Uaa(v, a) =
∫

v
∂

∂a
[ f (v|a)S(v|a)] dv − c′(a)

=
∫

v [ fa(v|a)S(v|a) + f (v|a)Sa(v|a)] dv − c′′(a)

=
∫

v [ f (v|a)S(v|a)S(v|a) + f (v|a)Sa(v|a)] dv − c′′(a)

=
∫

v
[
S2(v|a) + Sa(v|a)

]
f (v|a) dv − c′′(a).

We now use Lemma A.5 to derive the following equations for the agent’s utility and its
derivatives.

Lemma A.6. Given a canonical contract, v(y) := Ṽ(y|λ), the agent’s utility and its derivatives
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evaluated at a are

U (v, a) = g(λ) + µ̃
∫

∆g(y|λ) · S(y|a0) f (y|a) dy − c(a),

Ua (v, a) = µ̃
∫

∆g(y|λ) · S(y|a) · S(y|a0) f (y|a) dy − c′(a),

Uaa (v, a) = µ̃
∫

∆g(y|λ)
(

S2(y|a) + Sa(y|a)
)
· S(y|a0) f (y|a) dy − c′′(a),

where
∆g(y|λ) = g(λ + µ̃S(y|a0))− g(λ)

µ̃S(y|a0)
.

Proof. The utility function, U, evaluated at the canonical contract, Ṽ(y|λ), and action, a,
is

U
(
Ṽ(y|λ), a

)
=

∫
Ṽ(y|λ) f (y|a) dy.

Recall that Ṽ(y|λ) = g (λ + µ̃S(y|a0)). Substituting in yields

U
(
Ṽ(y|λ), a

)
=

∫
g (λ + µ̃S(y|a0)) f (y|a) dy.

Adding and subtracting g(λ), we rewrite the integral:

U
(
Ṽ(y|λ), a

)
= g(λ) +

∫
[g (λ + µ̃S(y|a0))− g(λ)] f (y|a) dy.

Using the definition ∆g(y|λ) = g(λ+µ̃S(y|a0))−g(λ)
µ̃S(y|a0)

and multiplying by µ̃S(y|a0)
µ̃S(y|a0)

yields

U
(
Ṽ(y|λ), a

)
= g(λ) + µ̃

∫
∆g(y|λ) · S(y|a0) f (y|a) dy − c(a).

The lemma follows from A.5’s formula for the derivatives applied to v(y) = ∆g(y|λ) ·
S(y|a0).

We now demonstrate that for λ sufficiently large the agent receives a strictly positive
payment for an arbitrarily large portion of the support of f (y|a) for any a > 0. We begin
by defining some additional notation.

Definition A.1. The threshold score, S
¯
(λ), is the maximum score such that the agent receives

no payment. It is the score that solves

S
¯
(λ) =

1
µ̃u′(0)

− λ

µ̃
.
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The threshold score is well defined because µ̃ > 0 by Lemma A.2.

Definition A.2. The threshold outcome, y
¯
(λ), is the outcome which induces the threshold score,

S
¯
(λ):

y
¯
(λ) = S−1(S

¯
(λ, µ̃)|a0).

A score that satisfies the equation exists by Assumption 3.3, which states that the score’s image is
R.

Lemma A.7. The threshold outcome approaches negative infinity as λ approaches infinity:

lim
λ→∞

y
¯
(λ) = −∞.

Proof. Lemma A.6’s result for Ua evaluated at a0 yields

Ua
(
Ṽ(y|λ), a0

)
= µ̃

∫
∆g(y|λ) · S(y|a0)

2 f (y|a0)− c′(a0).

The local incentive compatibility constraint requires that Ua
(
Ṽ(y|λ), a0

)
= 0. It follows

that
µ̃
∫

∆g(y|λ) · S(y|a0)
2 f (y|a0) = c′(a0).

Observe that the term inside the expectation is weakly positive because ∆g(y|λ) ≥ 0 by
the monotonicity of g and S(y|a0)

2 ≥ 0. Therefore,

c′(a0) ≥ µ̃
∫

S(y|a0)≤S
¯
(λ)

∆g(y|λ) · S2(y|a0) f (y|a0) dy.

By definition, for all y in the domain of integration, g(y) = u(0). Substituting in to
∆g(y|λ) yields

c′(a0) ≥ µ̃
∫

S(y|a0)≤S
¯
(λ)

(u(0)− g(λ))
µ̃S(y|a0)

· S2(y|a0) f (y|a0) dy.

We simplify and use the fact that fa(y|a0) = f (y|a0)S(y|a0)

c′(a0) ≥ (u(0)− g(λ)) ·
∫

S(y|a0)≤S
¯
(λ)

fa(y|a0) dy.

Integrating yields:
c′(a0) ≥ (u(0)− g(λ)) · Fa(y

¯
(λ)|a0).
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Observe that u(0) − g(λ) → −∞, and Fa(y
¯
(λ)|a0) < 0 by Assumption 3.2. Suppose

Fa(y
¯
(λ)|a0) does not approach 0. Then we have c′(a0) ≥ ∞. By contradiction, Fa(y

¯
(λ)|a0) →

0.
The threshold outcome, y

¯
(λ), cannot converge to infinity because S

¯
(λ) is negative for

λ sufficiently large because S(∞|a0) = ∞ by Assumption 3.3, and ∞ > S
¯
(λ). If S

¯
(λ) does

not converge to negative infinity, then there is a subsequence that converges to a finite
number. However, Fa(c|a0) < 0 for any c by Assumption 3.2. The proposition is proven
by contradiction.

Lemma A.8. As λ approaches infinity, the limit of the supremum of the second derivative of
agent’s utility at any action a > 0 is strictly negative:

lim sup
λ→∞

Uaa
(
Ṽ (y|λ) , a

)
< 0.

Proof. By Lemma A.6,

Uaa
(
Ṽ (y|λ) , a

)
= g(λ) + µ̃

∫
∆g(y|λ) · S(y|a0) f (y|a) dy − c(a)

Lemma A.9 states that there exists a y0 such that the integrand is negative for all y < y0.
It follows that

Uaa
(
Ṽ (y|λ) , a

)
≤ µ̃

∫ ∞

y0

∆g(y|λ)
(

S2(y|a) + Sa(y|a)
)
· S(y|a0) · f (y|â) dy − c′′(a).

Let Y+ be the set of y ≥ y0 where this integrand is positive. Then

Uaa
(
Ṽ (y|λ) , a

)
≤ µ̃

∫
Y+

∆g(y|λ)
(

S2(y|a) + Sa(y|a)
)
· S(y|a0) · f (y|â) dy − c′′(a).

Lemma A.7 implies that for λ sufficiently large, y
¯
(λ, a0) ≤ y0. Recall that for y > y

¯
, g(y) =

k′−1(λ + µS(y|a0)). The concavity of k′−1 (Assumption 4) implies that ∆g is decreasing
for y in Y+. Therefore,

Uaa
(
Ṽ (y|λ) , a

)
≤ µ̃∆g(y0|λ)

∫
Y+

(
S2(y|a) + Sa(y|a)

)
· S(y0|a0) · f (y|â) dy − c′′(a).
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Because g(y) is concave for y > y
¯

and y0 > y
¯

µ̃∆g(y0|λ) ≤ µ̃g′(λ + µ̃S(y|a0))

=
µ̃

λ + µ̃S(y|a0)
· (λ + µ̃S(y|a0))g′(λ + µ̃S(y|a0)).

Lemma A.10 states that µ̃
λ → 0 as λ → ∞, and Assumption 4 implies that (λ+ µ̃S(y0|a0))g′(λ+

µ̃S(y0|a0)) has a finite limit. It follows that

Uaa
(
Ṽ (y|λ) , a

)
≤ −c′′(a) < 0

with the last inequality implied by the strict convexity of the cost function (Assumption
1).

We now prove Proposition 2.

Proof. We first prove that there exists λ0 such that, for all λ ≥ λ0 and a in A,

Uaa(Ṽ(y|λ), a) ≤ 0.

To reach a contradiction, assume that this is not the case. Then there exists a sequence
of λn → ∞ and ak such that

Uaa(Ṽ(y|λn),n ) > 0.

Because A is compact, we can take a convergent subsequence where ak → a1. There-
fore,

lim sup
λ→∞

Uaa(Ṽ(y|λ), a1) > 0.

This contradicts Lemma A.8.
For any λ ≥ λ0, we thus have that U(Ṽ(y|λ), a) is concave in a. The proposition is

proven by letting U∗ be the solution to λ∗(U∗) = λ0. The agent’s problem is concave in a
for Ū ∈ [U∗, UR] because λ∗(Ū) is monotonic by Proposition 1.4

We conclude the section by proving two minor lemmas that we used in the above proofs.

Lemma A.9. There exists y0 such that for all y < y0,

∆g(y|λ)
(

S2(y|a) + Sa(y|a)
)
· S(Y|a0) ≤ 0.
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Proof. The lemma follows from these 3 facts.

1. ∆g(y|λ) ≥ 0

2. There exists y0 such that S(Y|a0) < 0 for y < y0

3. There exists y0 such that
(
S2(y|a) + Sa(y|a)

)
> 0 for y ≤ y0.

The monotonicity of g implies the first fact. The second fact follows from Assumption 3.3.
Assumption 3.4 and the following algebra implies the final fact.

S2(y|â) + Sa(y|a) = S2(y|â) + d
da

fa(y|a)
f (y|a) = S2(y|â) + faa(y|a)

f (y|a) − fa(y|a)2

f (y|a)2 =
faa(y|a).
f (y|a) .

The density is always positive, so the final expression is positive whenever faa(y|a) is
positive.

Lemma A.10. As λ → ∞, µ̃
λ → 0.

Proof. Proposition A.7 and 3.3 imply that S
¯
(λ) → −∞. The result follows from the defi-

nition of S
¯
(λ).

A.3 Proof of Theorem 1

Parts (1) and (2) follow from Proposition 1. Part (3) follows from Proposition 2. For any
Ū ≥ U∗ we have that v∗(Ū) is concave, and thus is a solution to the cost minimization
problem. Any other solution also solves the relaxed cost minimization problem, so equals
v∗(Ū) almost everywhere.
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